2. Релятивистский газ с учетом вырождения
В центральных областях звезд, находящихся на поздних стадиях эволюции, а также при взрывах сверхновых кинетическая энергия электронов может стать порядка их энергии покоя, т.е. скорости их приближаются к скорости света:
|
|
(2.1) |
При вычислении термодинамических функций необходимо тогда использовать
полные релятивистские выражения для энергии и импульса электронов.
С другой стороны, плотности могут вырасти настолько, что среднее число
частиц в ячейке фазового пространства приближается к единице. При
этом необходимо учитывать принцип Паули для электронов (спин = 1/2),
число которых в ячейке фазового пространства равно либо нулю, либо
единице. Среднее число электронов с энергией
в ячейке
задается функцией Ферми [145]
|
|
(2.2) |
где
- химический потенциал электронов,
![]() |
(2.3) |
Термодинамические функции находятся с помощью интегралов по импульсному
пространству (с учетом статистического веса
) [145]:
|
|
(2.4) |
|
|
(2.5) |
|
|
(2.6) |
|
|
(2.7) |
После преобразования интегралов и введения безразмерных величин
|
|
(2.8) |
получим
![]() |
(2.9) |
где
![]() |
(2.10) |
Когда
, в термодинамическом равновесии
необходимо учитывать позитроны. Аннигиляция пары
приводит к рождению фотонов, химический потенциал которых в равновесии
равен нулю,
. Из условия равновесия аннигиляции
следует равенство
|
|
(2.11) |
Термодинамические функции для позитронов получаются из (2.9), где
следует заменить
на
и использовать интегралы
,
,
,
, получаемые
из
в (2.10) заменой
на
.
Нуклоны и ядра часто можно считать невырожденными и нерелятивистскими,
поэтому для них, вместе с излучением, имеем
|
|
(2.12) |
|
|
(2.13) |
![]() |
(2.14) |
Здесь рассмотрено полностью ионизованное вещество. Если ядерные реакции
не идут и весовые доли элементов неизменны (
), то
аналогично (1.18) имеем
|
|
(2.15) |
В (2.12)-(2.15) использована величина
![]() |
(2.16) |
![]() |
(2.17) |
Выражение (2.17) с учетом (2.9), (2.10) служит для нахождения зависимости
. Для случая полной ионизации
при
,
имеем из (1.6), (2.16) и (2.17)
|
|
(2.18) |
В данном параграфе отсчет энергии ведется от энергии покоя ядер, которая в отсутствии ядерных превращений остается неизменной.
Рассмотрим предельные случаи формул (2.9).
а) Сильное вырождение. При нулевой температуре электроны
заполняют фазовое пространство вплоть до граничного импульса Ферми
. Плотность электронов равна удвоенному (за счет статистического
веса) числу ячеек в сферической области фазового пространства радиусом
:
|
|
(2.19) |
С учетом (2.17) получаем в отсутствие позитронов
|
|
(2.20) |
Кинетическая энергия электрона на границе фазовой области называется энергией Ферми:
![]() |
(2.21) |
Учтя, что
при
и
при
, получаем из (2.5), (2.6)
![]() |
(2.22) |
![]() |
(2.23) |
Температурные поправки при сильном вырождении находятся из разложения общих формул с помощью соотношения [145]
|
|
(2.24) |
|
|
(2.25) |
![]() |
(2.26) |
![]() |
(2.27) |
![]() |
(2.28) |
Здесь
, параметр
разложения
, а функции
после сведения интегралов (2.10) к виду (2.24) равны
,
,
.
Найдем явную зависимость
,
и
от
и
, оставляя только члены ~
.
Используя определение
из (2.20), (2.21) и соотношение (2.25),
получаем связь между
,
и
:
|
|
(2.29) |
Учтя малость
, получим
После подстановки
в (2.23), (2.25)-(2.28) имеем
и явные выражения термодинамических функций
![]() |
(2.30) |
В предельных случаях функции
и
равны
![]() |
(2.31) |
Учтя (2.31), в нерелятивистском пределе
получаем из
(2.30)
![]() |
(2.32) |
В ультрарелятивистском пределе
соответственно имеем
![]() |
(2.33) |
б) Очень малая плотность вещества. Плотность вещества может
быть настолько малой, что концентрация пар превысит концентрацию исходных
электронов. В этом случае малым параметром является величина
;
при
имеет место
. Разлагая (2.10)
в ряд по
, получим, используя интегрирование по частям,
![]() |
(2.34) |
![]() |
(2.35) |
При
интегралы (2.35) выражаются [145] через
-функцию
и
-функцию Римана с помощью соотношения
|
|
(2.36) |
Учитывая для целых
значения
из [145]
и
, получаем
![]() |
(2.37) |
С учетом (2.34)-(2.37) и определения
в (2.29), термодинамические
функции с учетом (2.9), (2.17) примут вид
![]() |
(2.38) |
![]() |
(2.39) |
В случае ультрарелятивистских пар
для (2.39) имеют
место асимптотические представления [166]
![]() |
(2.40) |
Из (2.38)-(2.40) получаем термодинамические функции вблизи ультрарелятивистских
пар в газе малой плотности
![]() |
(2.41) |
В нерелятивистском пределе
, оставляя два члена
при разложении знаменателя в (2.35), имеем [93]
![]() |
(2.42) |
![]() |
(2.43) |
В табл. 3 приведены значения функций
,
для
, полученные численным интегрированием
в [167].
в) Слабое вырождение.
Слабое вырождение соответствует
в (2.2). Тогда в
интегралах (2.10) можно провести разложение в ряд, воспользовавшись
большим значением экспоненты в знаменателе. Оставляя два первых члена
разложения, получаем [218, 166, 363, 93]
![]() |
(2.44) |
| 0.00 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 0.50 | 9.4989 (-1) | 9.5476 (-1) | 9.6299 (-1) | 9.8119 (-1) | 9.8342 (-1) | 9.8702 (-1) |
| 1.00 | 8.2749 (-1) | 8.4020 (-1) | 8.6278 (-1) | 9.2303 (-1) | 9.3130 (-1) | 9.4529 (-1) |
| 1.50 | 6.7622 (-1) | 6.9345 (-1) | 7.2532 (-1) | 8.3028 (-1) | 8.4519 (-1) | 8.7168 (-1) |
| 2.00 | 5.2709 (-1) | 5.4480 (-1) | 5.7846 (-1) | 7.1580 (-1) | 7.3497 (-1) | 7.7039 (-1) |
| 2.50 | 3.9653 (-1) | 4.1217 (-1) | 4.4246 (-1) | 5.9438 (-1) | 6.1464 (-1) | 6.5311 (-1) |
| 3.00 | 2.9030 (-1) | 3.0290 (-1) | 3.2762 (-1) | 4.7800 (-1) | 4.9689 (-1) | 5.3345 (-1) |
| 3.50 | 2.0806 (-1) | 2.1764 (-1) | 2.3656 (-1) | 3.7418 (-1) | 3.9040 (-1) | 4.2216 (-1) |
| 4.00 | 1.4664 (-1) | 1.5360 (-1) | 1.6748 (-1) | 2.8635 (-1) | 2.9949 (-1) | 3.2544 (-1) |
| 4.50 | 1.0189 (-1) | 1.0685 (-1) | 1.1675 (-1) | 2.1497 (-1) | 2.2520 (-1) | 2.4549 (-1) |
| 5.00 | 7.0003 (-2) | 7.3461 (-2) | 8.0361 (-2) | 1.5877 (-1) | 1.6650(-1) | 1.8188 (-1) |
| 5.50 | 4.7634 (-2) | 5.0006 (-2) | 5.4746 (-2) | 1.1563 (-1) | 1.2133 (-1) | 1.3271 (-1) |
| 6.00 | 3.2147 (-2) | 3.3756 (-2) | 3.6973 (-2) | 8.3190 (-2) | 8.7329 (-2) | 9.5597 (-2) |
| 7.00 | 1.4345 (-2) | 1.5066 (-2) | 1.6510 (-2) | 4.1752 (-2) | 4.3848 (-2) | 4.8039 (-2) |
| 8.00 | 6.2613 (-3) | 6.5769 (-3) | 7.2085 (-3) | 2.0259 (-2) | 2.1280 (-2) | 2.3321 (-2) |
| 9.00 | 2.6856 (-3) | 2.8211 (-3) | 3.0922 (-3) | 9.5667 (-3) | 1.0049 (-2) | 1.1014 (-2) |
| 10.0 | 1.1356 (-3) | 1.1929 (-3) | 1.3076 (-3) | 4.4175 (-3) | 4.6404 (-3) | 5.0864 (-3) |
| В данной и последующих таблицах в скобках указан порядок величины | ||||||
Из (2.17) имеем с нужной точностью, учтя (2.44) и величину
из (2.29),2
![]() |
(2.45) |
При выводе (2.45) использовалась малость членов, содержащих , которые учитывают слабое вырождение. С помощью (2.44), (2.45) получаем из (2.9)
![]() |
(2.46) |
Формулы (2.46) справедливы для слабо вырожденного газа произвольной
плотности, в том числе очень малой, когда число рождающихся пар много
больше исходного числа электронов и
.
Необходимо также, чтобы газ не был релятивистским, так как при
рождающиеся пары заполняют фазовое пространство даже при очень малой
плотности. Таким образом, для применимости (2.46) требуется выполнение
условия
, когда справедливо разложение (2.43)3.
При
из (2.46) и (2.43), оставляя два члена разложения
по
, получаем термодинамические функции идеального
газа с поправками на вырождение, релятивизм и рождение пар (см. также
[166])
![]() |
(2.47) |
Величина
в (2.47) включает энергию покоя рождающихся
пар и их кинетическую энергию без релятивистских поправок, а в
- учтены релятивистские поправки к давлению пар. В пределе очень малой
плотности
, оставляя два члена разложения по
,
из (2.46) получаются формулы, совпадающие с нерелятивистским пределом
формул (2.38) при учете (2.42).
г) Нерелятивистский газ. В этом случае
и вкладом позитронов можно пренебречь. Формулы (2.9) и (2.10) при
этом сводятся к виду
![]() |
(2.48) |
![]() |
(2.49) |
В нерелятивистском пределе кинетическая энергия электронов отделяется от энергии покоя.
Если
, то
и вырождение
несущественно. В этом пределе получаем
![]() |
(2.50) |
Первые члены в интегралах (2.50) приводят к термодинамическим функциям
обычного газа (см. 1). С учетом поправок из первого соотношения
(2.48) и (2.49) имеем
что приводит к термодинамическим функциям, следующим из (2.47), если в них пренебречь поправками на релятивизм (
![]() |
(2.51) |
Определяя из первого соотношения (2.48)
![]() |
(2.52) |
д) Ультрарелятивистский газ. Когда кинетическая энергия электронов
много больше их энергии покоя, величиной
в интегралах
(2.10) можно пренебречь, что, с учетом определения (2.49) позволит
записать их в виде
|
|
(2.53) |
В ультрарелятивистском равновесном газе всегда имеет место
и вырождение не может быть малым ввиду интенсивного рождения пар.
Интегралы Ферми целого индекса обладают свойствами, позволяющими выразить
термодинамические функции ультрарелятивистского газа в виде полиномов
по
и
[166]. Из (2.49) легко показать, что4
![]() |
(2.54) |
![]() |
(2.55) |
В итоге получаем значения термодинамических функций для
![]() |
(2.56) |
В пределе сильного вырождения
вклад позитронов
пренебрежимо мал, и из первого соотношения (2.56) и (2.29) имеем
Это приводит к термодинамическим функциям (2.33) без членов
,
задающих отклонения от ультрарелятивизма. В ультрарелятивистском газе
малой плотности при
имеем
что приводит к термодинамическим функциям, следующим из (2.41) без учета отклонений от ультрарелятивизма
![]() |
| Рис. 2.
Области применимости приближенных асимптотических формул
на плоскости A) левее линии ayb применимо приближение вырожденного газа с поправками (2.30), B) правее линии czd - приближение малой плотности (2.38), C) внутри области oefg - приближение почти невырожденного почти нерелятивистского газа (2.46), D) ohlm - область применимости приближения нерелятивистского газа (2.48), Е) правее и выше ломаной npr применимо приближение ультрарелятивистского газа (2.56). В следующих областях применимы различные приближения: 1) nqby - приближения А и Е, 2) правее ломаной rzd - приближения В и Е, 3) cxg - приближения В и С, 4) oetlm - приближения С и D, 5) ahs - приближения А и D. Заштрихована область, где необходим численный расчет интегралов, входящих в термодинамические функции, например, методом Гаусса |
| Корни |
|||||
| 0.26356 | 0.61703 | 1.0311 | 1.4906 | 1.9859 | |
| 1.4134 | 2.1130 | 2.8372 | 3.5813 | 4.3417 | |
| 3.5964 | 4.6108 | 5.6203 | 6.6270 | 7.6320 | |
| 7.0858 | 8.3991 | 9.6829 | 10.944 | 12.188 | |
| 12.641 | 14.260 | 15.828 | 17.357 | 18.852 | |
| 0.52176 | 0.34801 | 0.52092 | 1.2510 | 4.1856 | |
| 0.39867 | 0.50228 | 1.0667 | 3.2386 | 12.877 | |
| 0.075942 | 0.14092 | 0.38355 | 1.3902 | 6.3260 | |
| 3.6118(-3) | 8.7199(-3) | 0.028564 | 0.11904 | 0.60475 | |
| 2.3370 (-5) | 6.8973 (-5) | 2.6271 (-4) | 1.2328(-3) | 6.8976 (-3) |
е) Анализ общего случая. При отсутствии малых параметров
для расчета термодинамических функций нужно вычислять интегралы (2.10)
численно. Весьма эффективным является метод, аналогичный методу Гаусса
[137], и использованный для этих целей в работе [46]. Подынтегральные
выражения в (2.10) представляются в виде
, где
функция
ограничена на любом конечном интервале и хорошо
аппроксимируется каким-нибудь полиномом степени
на
интервале
при достаточно большом
. Вычисления
проводятся по следующей квадратурной формуле:
|
|
(2.57) |
Формула (2.57) является точной, если
Выражения для адиабатического показателя
и теплоемкостей
в общем случае при постоянном ядерном составе получены в [46]
![]() |
(2.58) |
![]() |
(2.59) |
Безразмерный химический потенциал
вдоль изэнтропы удовлетворяет
уравнению
|
|
(2.60) |
![]() |
| Рис. 3.
Зависимость показателя адиабаты |
![]() |
| Рис. 4.
Зависимость теплоемкости при постоянном объеме |
| Рис. 5.
Зависимость теплоемкости при постоянном объеме |
Задача. Найти релятивистские поправки к адиабатическому показателю
в идеальном газе.
Ответ.
.
При этом использованы формулы (1.11), (2.13), (2.15), (2.18) и (2.47),
где опущены поправки на вырождение и рождение пар
и
.
<< 1. Идеальный газ с | Оглавление | 3. Уравнение состояния при ... >>
|
Публикации с ключевыми словами:
Эволюция звезд - физические процессы
Публикации со словами: Эволюция звезд - физические процессы | |
См. также:
Все публикации на ту же тему >> | |


![$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{l}
%$\displaystyle{ I_{_{^{n^{-}}}}=\int _{0}^{\infty }\frac{x^{2}dx}{1+\exp \left( \sqrt{x^{2}+\alpha ^{2}}-\beta \right) } , }$ %$\displaystyle{ I_{_{^{p^{-}}}}=\int _{0}^{\infty }\frac{x^{4}dx}{\sqrt{x^{2}+\alpha ^{2}}\left[ 1+\exp \left( \sqrt{x^{2}+\alpha ^{2}}-\beta \right) \right] } , }$ %$\displaystyle{ I_{_{^{E^{-}}}}=\int _{0}^{\infty }\frac{\sqrt{x^{2}+\alpha ^{2}}x^{2}dx}{1+\exp \left( \sqrt{x^{2}+\alpha ^{2}}-\beta \right) } . }$ %\end{tabular}}
%\end{displaymath}
\eqalign{
&I_{n^-}=\intinf{x^2 dx\over \eradxab},
\cr
&I_{P^-}=\intinf{x^4 dx\over \radxa\left[\eradxab\right]},
\cr
&I_{E^-}=\intinf{\radxa x^2 dx\over \eradxab}.
\cr}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula756.gif)
![$$
%\begin{displaymath}S_{N,r}=\frac{k}{\rho }\Sigma _{i}n_{i}\left\{ \frac{5}{2}+\ln \left[ \left( \frac{m_{i}kT}{2\pi \hbar ^{2}}\right) ^{3/2}\frac{g_{i}}{n_{i}}\right] \right\} +\frac{4}{3}\frac{aT^{3}}{\rho } \end{displaymath}
S_{N,r}={k\over \rho}\sum_i n_i\left\{{5\over 2}+\ln\left[\left(
m_i kT\over 2\pi\hbar^2\right)^{3/2}{g_i\over n_i}\right]\right\}+
{4\over 3}{aT^3\over\rho},
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula760.gif)


![$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{l}
%$\displaystyle{ \epsilon _{Fe}=\left( m_{e}^{2}c^{4}+p_{Fe}^{2}c^{2}\right) ^{1/2}-m_{e}c^{2}=m_{e}c^{2}\left( \sqrt{1+y^{2}}-1\right) , \quad
% y=\frac{p_{Fe}}{m_{e}c} , }$ %$\displaystyle{ \rho =\frac{m_{e}^{3}c^3\mu_Z m_u}{3\pi^2\hbar^3}y^3 =9.740\cdot10^5 \mu_Z \left[\left(\frac{\epsilon_{Fe}}{m_ec^2}+1\right)^2-1\right]^{3/2} . }$ %\end{tabular}}
%\end{displaymath}
\eqalign{
&\eFe=(\mec24+\pFe^2 c^2)^{1/2}-\mec{}2=\mec{}2(\rady{}-1),
\cr
\noalign{\medskip}
&y={\pFe\over \mec{}{}},
\cr
&\rho={\mec33 \mu_Z m_{\mathrm{u}}\over 3\pi^2\hbar^3} y^3=
9.740\cdot10^5\mu_Z\left[\left({\eFe\over \mec{}2}+
1\right)^2-1\right]^{3/2}.
\cr}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula767.gif)
![$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{l}
%$\displaystyle{ E_{e}=\frac{2}{\rho }\frac{4\pi }{(2\pi \hbar )^{3}}\int ^{p_{Fe}}_{0}(p^{2}c^{2}+m^{2}_{e}c^{4})^{1/2}p^{2}dp=\frac{m^{4}_{e}c^{5}}{24\pi ^{2}\hbar ^{3}\rho }g(y)= }$ [3mm]
%$\displaystyle{ \qquad =\frac{6.002\cdot 10^{22}}{\rho }g(y) , }$ [3mm]
%$\displaystyle{ P_{e}=\frac{2}{3}\frac{4\pi c}{(2\pi \hbar )^{3}}\int ^{p_{Fe}}_{0}(p^{2}+m^{2}_{e}c^{4})^{-1/2}p^{4}dp=\frac{m^{4}_{e}c^{5}}{24\pi ^{2}\hbar ^{3}}f(y) , }$ %\end{tabular}}
%\end{displaymath}
\eqalign{ &\eqalign{ E_{\mathrm{e}}&={2\over \rho}\pipih\int_0^{\pFe} (p^2 c^2+\mec24)^{1/2}p^2 dp\cr &=\mcpih{24}\rho g(y)={6.002\cdot 10^{22}\over \rho} g(y),\cr }\cr &P_{\mathrm{e}}={2\over 3}{4\pi c\over (2\pi\hbar)^3}\int_0^{\pFe} (p^2+\mec22)^{-1/2}p^4 dp=\mcpih{24}{}f(y),\cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula768.gif)

![\begin{displaymath}
\eqalign{ E_{\mathrm{e}}=&\mcpih{24}\rho \Biggl[g(y_1)+\piay42{}21{}(3y_1^2+1)\rady1 \cr &\qquad+\piay745415 (2y_1^4-y_1^2+1)\rady1+\ldots\Biggr], \cr
}
\end{displaymath}](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula772.gif)
![\begin{displaymath}
\eqalign{ P_{\mathrm{e}}=\mcpih{24}{} &\Biggl[f(y_1)+{4\pi^2\over \alpha^2}y_1\rady1 \cr &\qquad+\piay74{15}413 (2y_1^2-1)\rady1+\ldots\Biggr], \cr
}
\end{displaymath}](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula773.gif)
![\begin{displaymath}
\eqalign{ S_{\mathrm{e}}={\mec2{}\over 3\hbar^3\rho}k^2T &\Biggl[y_1\rady1 \cr &\qquad+\piay72{15}213(y_1^2-{1\over 2})\rady1+\ldots\Biggr]. \cr
}
\end{displaymath}](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula774.gif)
![$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{l}
%$\displaystyle{ E_{e}=\frac{m^{4}_{e}c^{5}}{24\pi ^{2}\hbar ^{3}\rho }\left[ g(y)+\frac{4\pi ^{2}}{\alpha ^{2}}y\sqrt{y^{2}+1}\right] , }$ [3mm]
%$\displaystyle{ P_{e}=\frac{m^{4}_{e}c^{5}}{24\pi ^{2}\hbar ^{3}\rho }\left[ f(y)+\frac{4\pi ^{2}}{3\alpha ^{2}}y\frac{y^{2+2}}{\sqrt{y^{2}+1}}\right] , }$ [3mm]
%$\displaystyle{ S_{e}=\frac{m^{2}_{e}c1}{3\hbar ^{3}\rho }k^{2}Ty\sqrt{y^{2}+1} }$ %\end{tabular}}
%\end{displaymath}
\eqalign{ &E_{\mathrm{e}}=\mcpih{24}\rho\left[g(y)+{4\pi^2\over \alpha^2}y\rady{}\right], \cr \noalign{\smallskip} &P_{\mathrm{e}}=\mcpih{24}{}\left[f(y)+{4\pi^2\over 3\alpha^2} y{y^2+2\over \rady{}}\right], \cr &S_{\mathrm{e}}={\mec2{}\over 3\hbar^3\rho} k^2Ty\rady{}. \cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula779.gif)






![$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{l}
%$\displaystyle{ \beta =\frac{y^{3}\alpha ^{3}}{\pi ^{2}A_{2}} , \quad n_{e\mp}=\frac{15}{\pi ^{4}}I_{2}(0)\frac{aT^{3}}{k}A_{1}\left( 1\pm \frac{1}{6I_{2}(0)}\frac{y^{3}\alpha ^{3}}{A_{1}}\right) , }$ [3mm]
%$\displaystyle{ E_{e-}+E_{e+}=\frac{7}{4}\frac{aT^{4}}{\rho }B_{0}\left( 1+\frac{30}{7\pi ^{6}}\frac{B_{2}}{B_{0}A^{2}_{2}}y^{6}\alpha ^{6}\right) , }$ [3mm]
%$\displaystyle{ P_{e-}+P_{e+}=\frac{7}{12}aT^{4}A_{0}\left( 1+\frac{30}{7\pi ^{6}}\frac{y^{6}\alpha ^{6}}{A_{0}A_{2}}\right) , }$ [3mm]
%$\displaystyle{ S_{e-}+S_{e+}=\frac{7}{3}\frac{aT^{3}}{\rho }\frac{3B_{0}+A_{0}}{4}\left( 1+\frac{15}{7\pi ^{6}}\frac{6B_{2}-2A_{2}}{3B_{0}+A_{0}}\frac{y^{6}\alpha ^{6}}{A^{2}_{2}}\right) , }$ %\end{tabular}}
%\end{displaymath}
\eqalign{ &\beta={\ya3\over \pi^2 A_2},\quad n_{\mathrm{e^\mp}}={15\over \pi^4}I_2(0){\alpha T^3\over k}A_1 \left(1\pm {1\over 6I_2(0)}{\ya3\over A_1}\right), \cr \noalign{\smallskip} &E_{\mathrm{e^-}}+E_{\mathrm{e^+}}={7\over 4}{\alpha T^4\over \rho}B_0 \left(1+ {30\over 7\pi^6}{B_2\over B_0 A_2^2}\ya6\right), \cr \noalign{\smallskip} &P_{\mathrm{e^-}}+P_{\mathrm{e^+}}={7\over 12}\alpha T^4 A_0 \left(1+ {30\over 7\pi^6}{\ya6\over A_0 A_2}\right), \cr \noalign{\smallskip} &S_{\mathrm{e^-}}+S_{\mathrm{e^+}}={7\over 3}{\alpha T^3\over \rho}{3B_0+A_0\over 4} \left(1+ {15\over 7\pi^6}{6B_2-2A_2\over 3B_0+A_0} {y^6a^6\over A_2^2}\right), \cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula789.gif)



![$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{l}
%$\displaystyle{ A_{0}=\frac{360}{7\pi ^{4}}\alpha ^{2}\left[ K_{2}(\alpha )-\frac{1}{4}K_{2}(2\alpha )\right] , }$ %$\displaystyle{ B_{0}=\frac{120}{7\pi ^{4}}\alpha ^{2}\left[ \alpha K_{1}(\alpha )+3K_{2}(\alpha )-\frac{\alpha }{2}K_{1}(2\alpha )-\frac{3}{4}K_{2}(2\alpha )\right] , }$ %$\displaystyle{ A_{1}=\frac{\alpha ^{2}}{I_{2}(0)}\left[ K_{2}(\alpha )-\frac{1}{2}K_{2}(2\alpha )\right] , }$ %$\displaystyle{ A_{2}=\frac{6\alpha ^{2}}{\pi ^{4}}\left[ K_{2}(\alpha )-K_{2}(2\alpha )\right] , }$ %$\displaystyle{ B_{2}=\frac{2\alpha ^{2}}{\pi ^{2}}\left[ \alpha K_{1}(\alpha )+3K_{2}(\alpha )-2\alpha K_{1}(2\alpha )-3K_{2}(2\alpha )\right] . }$ %\end{tabular}}
%\end{displaymath}
\eqalign{ &A_0={360\over 7\pi^4}\alpha^2 \left[\Ka2{}-{1\over 4}\Ka22\right], \cr \noalign{\smallskip} &B_0={120\over 7\pi^4}\alpha^2 \left[\alpha \Ka1{}+3\Ka2{}-{\alpha\over 2}\Ka12-{3\over 4}\Ka22\right], \cr \noalign{\smallskip} &A_1={\alpha^2\over I_2(0)}\left[\Ka2{}-{1\over 2}\Ka22\right],\quad A_2={6\alpha^2\over \pi^4}\left[\Ka2{}-\Ka22\right], \cr \noalign{\smallskip} &B_2={2\alpha^2\over \pi^2} \left[\alpha \Ka1{}+3\Ka2{}-2\alpha \Ka12-3\Ka22\right], \cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula793.gif)

![$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{l}
%$\displaystyle{ I_{n\mp }=\alpha ^{2}\left[ K_{2}(\alpha )e^{\pm \beta }-\frac{1}{2}K_{2}(2\alpha )e^{\pm 2\beta }\right] , }$ %$\displaystyle{ I_{P\mp }=3\alpha ^{2}\left[ K_{2}(\alpha )e^{\pm \beta }-\frac{1}{4}K_{2}(2\alpha )e^{\pm 2\beta }\right] , }$ %$\displaystyle{ I_{E\mp }=\alpha ^{3}\left[ K_{1}(\alpha )e^{\pm \beta }+\frac{3}{\alpha }K_{2}(\alpha )e^{\pm \beta }-\frac{1}{2}K_{1}(2\alpha )e^{\pm 2\beta }-\frac{3}{4\alpha }K_{2}(2\alpha )e^{\pm 2\beta }\right] . }$ %\end{tabular}}
%\end{displaymath}
\eqalign{ &\Imp{n}=\alpha^2\left[\Ka2{}\epmb{}-{1\over 2}\Ka22\epmb2\right], \cr \noalign{\medskip} &\Imp{P}=3\alpha^2\left[\Ka2{}\epmb{}-{1\over 4}\Ka22\epmb2\right], \cr \noalign{\medskip} &\eqalign{ \Imp{E}&=\alpha^3\Biggl[\Ka1{}\epmb{}+{3\over \alpha}\Ka2{}\epmb{} \cr &\qquad-{1\over 2}\Ka12\epmb2-{3\over 4\alpha}\Ka22\epmb2\Biggr]. \cr }\cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula795.gif)
![$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{l}
%$\displaystyle{ \sh\beta = \frac{\alpha y^3}{6K_2(\alpha)} \left[1 + \frac{K_2(2\alpha)}{K_2(\alpha)}\sqrt{1+\frac{\alpha^2y^6}{36K_2^2(\alpha)} } \right] , }$ %$\displaystyle{ \ch\beta = \sqrt{1+\frac{\alpha^2y^6}{36K_2^2(\alpha)} } + \frac{K_2(2\alpha)}{K_2(\alpha)} \frac{\alpha^2y^6}{36K_2^2(\alpha)} , }$ %$\displaystyle{ \ch 2\beta = 1 + 2\frac{\alpha^2y^6}{36K_2^2(\alpha)} , \quad % \sh 2\beta = \frac{\alpha y^3}{3K_2(\alpha)} \sqrt{1+\frac{\alpha^2y^6}{36K_2^2(\alpha)}} , }$ %$\displaystyle{ \beta = \ln\left[ \frac{\alpha y^3}{6K_2(\alpha)} + \sqrt{1+\frac{\alpha^2y^6}{36K_2^2(\alpha)}} \right] + \frac{K_2(2\alpha)}{K_2(\alpha)} \frac{\alpha y^3}{6K_2(\alpha)} . }$ %\end{tabular}}
%\end{displaymath}
\eqalign{ &\sinh\beta={\alpha y^3\over 6\Ka2{}}\left[1+{\Ka22\over \Ka2{}} \sqrt{1+\ayka}\>\right], \cr \noalign{\smallskip} &\cosh\beta=\sqrt{1+\ayka}+{\Ka22\over \Ka2{}}\ayka, \cr \noalign{\smallskip} &\cosh 2\beta=1+2\ayka,\quad \sinh 2\beta={\alpha y^3\over 3\Ka2{}}\sqrt{1+\ayka}, \cr \noalign{\smallskip} &\beta=\ln\left[{\alpha y^3\over 6\Ka2{}}+\sqrt{1+\ayka}\>\right]+ {\Ka22\over \Ka2{}}{\alpha y^3\over 6\Ka2{}} \cr}.
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula796.gif)
![$$
%\begin{displaymath}
%\ldots S_{e-}+S_{e+}=\frac{6k}{\mu _{Z}m_{u}y^{3}}\left\{ \left[ K_{1}(\alpha )+\frac{4}{\alpha }K_{2}(\alpha )\right] \sqrt{1+\frac{\alpha ^{2}y^{6}}{36K^{2}_{2}(\alpha )}}-\frac{y^{3}}{6}\ln\left[ \frac{\alpha y^{3}}{6K_{2}(\alpha )}+\sqrt{1+\frac{\alpha ^{2}y^{6}}{36K^{2}_{2}(\alpha )}}\right] +\right\} .
%\end{displaymath}
\eqalign{ &\summp{n}={6\rho\over \muzmu y^3}\left[{\Ka2{}\over \alpha} \sqrt{1+\ayka}-{\Ka22\over 2\alpha}\right], \cr \noalign{\smallskip} &\eqalign{ \summp{E}&={6kT\over \muzmu y^3}\Biggl\{\left[\Ka1{}+{3\over \alpha} \Ka2{}\right]\sqrt{1+\ayka} \cr &\qquad+\left[{3\over 2\alpha}\Ka22-\Ka12+ {\Ka1{}\Ka22\over \Ka2{}}\right] \cr &\qquad\times\ayka-{1\over 2}\Ka12-{3\over 4\alpha}\Ka22\Biggr\}, \cr }\cr &\eqalign{ \summp{P}&={6\rho kT\over \muzmu y^3}\Biggl[{\Ka2{}\over \alpha} \sqrt{1+\ayka} \cr &+{1\over 2\alpha}\Ka22\ayka-{1\over 4} {\Ka22\over \alpha}\Biggr], \cr }\cr \noalign{\smallskip} &\eqalign{ \summp{S}&={6kT\over \muzmu y^3}\Biggl\{\left[\Ka1{}+{4\over \alpha} \Ka2{}\right]\sqrt{1+\ayka} \cr &-{y^3\over 6}\ln\left[{\alpha y^3\over 6\Ka2{}}+ \sqrt{1+\ayka}\>\right] \cr &+\Biggl[{\Ka22\over \alpha}-\Ka12 +{\Ka1{}\Ka22\over \Ka2{}}\Biggr]\ayka \cr &-{\Ka12\over 2}- {\Ka22\over \alpha}\Biggr\}. \cr }\cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula797.gif)
![$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{l}
%$\displaystyle{ n_{e-}+n_{e+}=\frac{\rho }{\mu _{Z}m_{u}}\left\{ 1+\frac{9\pi }{\alpha ^{2}y^{6}}e^{-2\alpha }\left[ 1+\frac{15}{4\alpha }-\frac{\alpha ^{3/2}y^{3}}{6\sqrt{\pi }}\left( 1+\frac{15}{16\alpha }\right) \right] \right\} , }$ %$\displaystyle{ E_{e-}+E_{e+}=\frac{m_{e}c^{2}}{\mu _{Z}m_{u}}+\frac{3}{2}\frac{kT}{\mu _{Z}m_{u}}\left\{ 1+\frac{5}{4\alpha }+\frac{\alpha ^{3/2}y^{3}}{12\sqrt{\pi }}\left( 1-\frac{15}{16\alpha }\right) + \right. }$ %$\displaystyle{ \qquad\qquad \left. +\frac{6\pi }{\alpha ^{2}y^{6}}e^{-2\alpha }\left[ 1+\frac{21}{4\alpha }-\frac{\alpha ^{3/2}y^{3}}{6\sqrt{\pi }}\left( 1+\frac{27}{16\alpha }\right) \right] \right\} , }$ %$\displaystyle{ P_{e-}+P_{e+}=\frac{\rho kT}{\mu _{Z}m_{u}}\left\{ 1+\frac{\alpha ^{3/2}y^{3}}{12\sqrt{\pi }}\left( 1-\frac{45}{16\alpha }\right) + \right. }$ %$\displaystyle{ \qquad\qquad \left. + \frac{9\pi }{\alpha ^{3}y^{6}}e^{-2\alpha }\left[ 1+\frac{15}{4\alpha }-\frac{\alpha ^{3/2}y^{3}}{12\sqrt{\pi }}\left( 1+\frac{15}{16\alpha }\right) \right] \right\} , }$ %$\displaystyle{ S_{e-}+S_{e+}=\frac{k}{\mu _{Z}m_{u}}\left\{ \frac{5}{2}-\ln\left( \sqrt{\frac{2}{\pi }}\frac{\alpha ^{3/2}y^{3}}{3}\right) +\frac{15}{4\alpha }+\frac{\alpha ^{3/2}y^{3}}{24\sqrt{\pi }}\left( 1+\frac{45}{15\alpha }\right) + \right. }$ %$\displaystyle{ \qquad\qquad \left. +\frac{9\pi }{\alpha ^{2}y^{6}}e^{-2\alpha }\left[ 1+\frac{23}{4\alpha }-\frac{\alpha ^{3/2}y^{3}}{6\sqrt{\pi }}\left( 1+\frac{35}{16\alpha }\right) \right] \right\} . }$ %\end{tabular}}
%\end{displaymath}
\eqalign{ &\eqalign{ \summp{n}&={\rho\over \muzmu}\Biggl\{1+{9\pi\over \alpha^3 y^6} e^{-2\alpha}\Biggl[1+{15\over 4\alpha} \cr &\qquad-\ayspi6\left(1+{15\over 16\alpha} \right)\Biggr]\Biggr\}, \cr }\cr &\eqalign{ \summp{E}&=+{\mec{}2\over \muzmu}+{3\over 2} {kT\over \muzmu}\Biggl\{1+{5\over 4\alpha} \cr &\qquad+\ayspi{12}\left(1-{15\over 16\alpha}\right)+ {6\pi\over \alpha^2 y^6}e^{-2\alpha} \cr &\qquad\times\left[1+{21\over 4\alpha}-\ayspi6 \left(1+{27\over 16\alpha}\right)\right]\Biggr\}, \cr }\cr &\eqalign{ \summp{P}&={\rho kT\over \muzmu}\Biggl\{1+\ayspi{12} \left(1-{45\over 16\alpha}\right) \cr &\qquad+{9\pi\over \alpha^3 y^6}e^{-2\alpha}\left[1+{15\over 4\alpha}- \ayspi{12}\left(1+{15\over 16\alpha}\right)\right]\Biggr\}, \cr }\cr &\eqalign{ \summp{S}&={k\over \muzmu}\Biggl\{ {5\over 2}-\ln\left( \sqrt{{2\over\pi}}{\alpha^{3/2} y^3\over 3}\right)+{15\over 4\alpha} \cr &\qquad+\ayspi{24}\left(1+{45\over 16\alpha}\right)+ {9\pi\over \alpha^2 y^6}e^{-2\alpha} \cr &\qquad\times\left[1+{23\over 4\alpha}-\ayspi6\left( 1+{35\over 16\alpha}\right)\right]\Biggr\}. \cr }\cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula798.gif)
![$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{l}
%$\displaystyle{ \frac{\rho }{\mu _{Z}m_{u}}=\frac{\sqrt{2}}{\pi ^{2}}\left( \frac{m_{e}kT}{\hbar ^{2}}\right) ^{3/2}F_{1/2}(\beta -\alpha ) , }$ %$\displaystyle{ E_{e}=\frac{\sqrt{2}}{\pi ^{2}\rho }\left( \frac{m_{e}kT}{\hbar ^{2}}\right) ^{3/2}\left[ kTF_{3/2}(\beta -\alpha )+m_{e}c^{2}F_{1/2}(\beta -\alpha )\right] =\frac{m_{e}c^{2}}{\mu _{Z}m_{u}}+\frac{kT}{\mu _{Z}m_{u}}\frac{F_{3/2}(\beta -\alpha )}{F_{1/2}(\beta -\alpha )} , }$ %$\displaystyle{ P_{e}=\frac{2\sqrt{2}}{3\pi ^{2}}\left( \frac{m_{e}kT}{\hbar ^{2}}\right) ^{3/2}kTF_{3/2}(\beta -\alpha )=\frac{2}{3}\frac{\rho kT}{\mu _{Z}m_{u}}\frac{F_{3/2}(\beta -\alpha )}{F_{1/2}(\beta -\alpha )} , }$ %$\displaystyle{ S_{e}=\frac{\sqrt{2}}{\pi ^{2}}\frac{k}{\rho }\left( \frac{m_{e}kT}{\hbar ^{2}}\right) ^{3/2}\left[ \frac{5}{3}F_{3/2}(\beta -\alpha )-(\beta -\alpha )F_{1/2}(\beta -\alpha )\right] =\frac{k}{\mu _{Z}m_{u}}\left[ \frac{5}{3}\frac{F_{3/2}(\beta -\alpha )}{F_{1/2}(\beta -\alpha )}-(\beta -\alpha )\right] , }$ %\end{tabular}}
%\end{displaymath}
\eqalign{ &{\rho\over \muzmu}={\sqrt{2}\over \pi^2} \mkTh\Fba1, \cr &\eqalign{ E_{\mathrm{e}}&={\sqrt{2}\over \pi^2\rho} \mkTh\left[kT\Fba3+\mec{}2\Fba1\right] \cr &={\mec{}2\over \muzmu}+{kT\over \muzmu}{\Fba3\over \Fba1}, \cr }\cr &\eqalign{ P_{\mathrm{e}}&={2\sqrt{2}\over 3\pi^2} \mkTh kT\Fba3 \cr &={2\over 3}{\rho kT\over \muzmu}{\Fba3\over \Fba1}, \cr }\cr &\eqalign{ S_{\mathrm{e}}&={\sqrt{2}\over \pi^2}{k \over \rho} \mkTh\left[{5\over 3}\Fba3- (\beta-\alpha)\Fba1\right] \cr &={k\over \muzmu}\left[{5\over 3}{\Fba3\over \Fba1} -(\beta-\alpha)\right], \cr }\cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula799.gif)

![$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{l}
%$\displaystyle{ F_{1/2}(\beta -\alpha )=e^{\beta -\alpha }\Gamma(3/2)[1-2^{-3/2}e^{\beta -\alpha }] , }$ %$\displaystyle{ F_{3/2}(\beta -\alpha )=e^{\beta -\alpha }\Gamma(5/2)[1-2^{-5/2}e^{\beta -\alpha }] . }$ %\end{tabular}}
%\end{displaymath}
\eqalign{ &\Fba1=e^{\beta-\alpha}\Gamma({3\over 2})[1-2^{-3/2}e^{\beta-\alpha}], \cr &\Fba3=e^{\beta-\alpha}\Gamma({5\over 2})[1-2^{-5/2}e^{\beta-\alpha}], \cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula801.gif)

![$$
%\begin{displaymath}
%\beta -\alpha =\frac{1}{2}\left( \frac{3\pi ^{2}\rho }{\mu _{Z}m_{u}}\right) ^{2/3}\frac{\hbar ^{2}}{m_{e}kT}\left[ 1-\frac{\pi ^{2}}{3}\left( \frac{\mu _{Z}m_{u}}{3\pi ^{2}\rho }\right) ^{4/3}\left( \frac{m_{e}kT}{\hbar ^{2}}\right) ^{2}\right] =\frac{\alpha y^{2}}{2}\left( 1-\frac{\pi ^{2}}{3\alpha ^{2}y^{4}}\right) ,
%\end{displaymath}
\eqalign{ \beta-\alpha&={1\over 2}\left(3\pi^2\rho\over \muzmu\right)^{2/3} {\hbar^2\over m_{\mathrm{e}} kT} \cr &\qquad\times\left[1-{\pi^2\over 3} \left(\muzmu \over 3\pi^2\rho\right)^{4/3} \left(m_{\mathrm{e}} kT\over \hbar^2\right)^2\right] \cr &={\alpha y^2\over 2}\left(1-{\pi^2\over 3\alpha^2 y^4}\right), \cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula804.gif)




![$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{l}
%$\displaystyle{ \gamma _{1}=\left( k+\frac{N^{2}}{M}\right) \left[ 1+\frac{(\mu _{N}/\mu _{Z})\pi ^{4}}{45(I_{n-}-I_{n+})}+\frac{(\mu _{N}/\mu _{Z})(I_{p-}+I_{p+})}{3(I_{n-}-I_{n+})}\right] ^{-1} , }$ %$\displaystyle{ C_{\nu }=\frac{k}{\mu _{N}m_{u}}M , \quad C_{p}=\frac{k}{\mu _{N}m_{u}}\left( M+\frac{N^{2}}{k}\right) , }$ %\end{tabular}}
%\end{displaymath}
\eqalign{
& \eqalign{ \gamma_1 &=\left(\kappa+{N^2\over M}\right)\times \cr &\times \left[1+ {(\mu_N/\mu_Z)\pi^4\over 45(I_{n-}-I_{n+})} \,+{(\mu_N/\mu_Z)(I_{P-}-I_{P+})\over 3(I_{n-}-I_{n+})} \right]^{-1}, \cr}
\cr
& C_v={k\over \mu_N m_{\mathrm{u}}}M, \quad C_p={k\over \mu_N m_{\mathrm{u}}}\left(M+{N^2\over \kappa}\right),
\cr}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula815.gif)
![$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{l}
%$\displaystyle{ M=\frac{3}{2}+\frac{\mu _{N}/\mu _{Z}}{I_{n-}-I_{n+}}\left\{ \frac{4\pi ^{4}}{15}+\sum _{+,-}(3I_{E\pm }+I_{P\pm }+\alpha ^{2}I_{5\pm }+\alpha ^{2}I_{6\pm })- \right. }$ %$\displaystyle{ \left. \qquad\qquad -\frac{\left[ 3\left( I_{n-}-I_{n+}\right) +\alpha ^{2}\left( I_{4-}-I_{4+}\right) \right] ^{2}}{\sum _{+,-}\left( I_{5\pm }+I_{6\pm }\right) }\right\} , }$ %$\displaystyle{ N=1+\frac{\mu _{N}/\mu _{Z}}{3(I_{n-}-I_{n+})}\left\{ \frac{4\pi ^{4}}{15}+\sum _{+,-}(3I_{E\pm }+I_{P\pm })- \right. }$ %$\displaystyle{ \qquad\qquad \left. -\frac{3(I_{n-}-I_{n+})\left[ 3\left( I_{n-}-I_{n+}\right) +\alpha ^{2}\left( I_{4-}-I_{4+}\right) \right] }{\sum _{+,-}\left( I_{5\pm }+I_{6\pm }\right) }\right\} , }$ %$\displaystyle{ k=1+\frac{\mu _{N}}{\mu _{Z}}\frac{I_{n-}-I_{n+}}{\sum _{+,-}(I_{5\pm }+I_{6\pm })} , }$ %$\displaystyle{ I_{4\pm }=\int ^{\infty }_{0}\frac{dx}{1+\exp \left( \sqrt{x^{2}+\alpha ^{2}}\pm \beta \right) } , }$ %$\displaystyle{ I_{5\pm }=\int ^{\infty }_{0}\frac{\sqrt{x^{2}+\alpha ^{2}}dx}{1+\exp \left( \sqrt{x^{2}+\alpha ^{2}}\pm \beta \right) } , }$ %$\displaystyle{ I_{6\pm }=\int ^{\infty }_{0}\frac{x^{2}dx}{\sqrt{x^{2}+\alpha ^{2}}\left[ 1+\exp \left( \sqrt{x^{2}+\alpha ^{2}}\pm \beta \right) \right] } . }$ %\end{tabular}}
%\end{displaymath}
\eqalign{ &\eqalign{ M&={3\over 2}+{\mu_N/\mu_Z\over \sumI{n}}\Biggl\{{4\pi^4\over 15} +\sum_{+,-}\left(3I_{E\pm}+I_{P\pm}+\alpha^2I_{5\pm} +\alpha^2 I_{6\pm}\right) \cr &\qquad-{\left[3(\sumI{n})+\alpha^2(\sumI4)\right]^2\over \sum_{+,-} (I_{5\pm}+I_{6\pm})}\Biggr\}, \cr }\cr &\eqalign{ N&=1+{\mu_N/\mu_Z\over 3\left(\sumI{n}\right)}\Biggl\{{4\pi^4\over 15}+ \sum_{+,-}\left(3I_{E\pm}+I_{P\pm}\right) \cr &\qquad-{3\left(\sumI{n}\right)\left[3\left(\sumI{n}\right)+ \alpha^2\left(\sumI4\right)\right]\over \sum_{+,-} (I_{5\pm}+I_{6\pm})}\Biggr\}, \cr }\cr &\kappa=1+{\mu_N\over \mu_Z}{\sumI{n}\over \sum_{+,-} (I_{5\pm}+I_{6\pm})}, \cr &\Ipm4=\intinf{dx\over 1+\exp\left(\sqrt{x^2+\alpha^2}\pm\beta\right)}, \cr &\Ipm5=\intinf{\sqrt{x^2+\alpha^2}dx\over 1+\exp\left(\sqrt{x^2+\alpha^2}\pm\beta\right)}, \cr &\Ipm6=\intinf{x^2 dx\over \sqrt{x^2+\alpha^2} \left[1+\exp\left(\sqrt{x^2+\alpha^2}\pm\beta\right)\right]}. \cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula816.gif)

