Последние поступления
за 31 марта 2003.
- спектральные линии поглощения (а также комплексы линий - полосы) в спектрах Солнца, звезд и др. космич. объектов. Названы в честь нем. физика и астронома Й. Фраунгофера, детально исследовавшего эти линии в спектре Солнца (1814 г.). Ф.л. - важный источник информации о хим. составе атмосфер Солнца и звезд, а также о физ. условиях в них (см.
- характерное расстояние D, на к-ром происходит экранирование кулоновского поля заряда в плазме в результате того, что заряд (напр., заряд иона) оказывается преимущественно окруженным частицами с зарядом противоположного знака (в случае иона - электронами). В масштабах r>D плазма квазинейтральна. Р.э.
Для земного наблюдателя Солнце явл. самым ярким небесным телом не только в оптич. диапазоне, но и в диапазоне радиоволн. Атмосфера Земли пропускает радиоволны с длинами от неск. мм до десятков м. Исследование Р.С. в этом диапазоне длин волн позволяет сделать ряд важных выводов о строении и физ.
- галактики, являющиеся источниками мощного эл.-магн. излученияв радиодиапазонею Термин "Р." возник в результате отождествления в 50-х гг. 20 в. ряда мощных источников космич. радиоизлучения с относительно слабыми источниками оптич. излучения - далекими галактиками. Выделение Р.
- относительное ср. содержание (иногда говорят обилие) данного хим. элемента (нуклида) в космич. веществе. Под Р.э. часто понимают не только содержание к.-л. хим. элемента, но также и его отдельных устойчивых изотопов. Р.э. определяется на основании совокупности всех данных космохимии: изучения спектров Солнца и звезд, состава первичных космических лучей, хим.
- эл.-магн. излучение Вселенной, не искаженное ближайшими источниками (атмосферой Земли, излучением Галактики и т.п.). Именно Ф.и.В. должны были бы воспринимать приборы с широким полем зрения, вынесенные в пространство между галактиками. К сожалению, такой эксперимент невозможен. Астрономы изучают Ф.и.В., используя наземные и внеатмосферные приборы.
Земная атмосфера прозрачна почти полностью для падающего извне излучения лишь в двух сравнительно узких окнах: оптическом - в диапазоне длин волн от 0,3 мкм (3000 ) до 1,5-2 мкм (область до 8 мкм состоит из ряда узких полос пропускания) и в радиодиапазоне - для волн длиной от 1 мм до 15-30 м.
В астрономии нет единого универсального способа определения расстояний. По мере перехода от близких небесных тел к более далеким одни методы определения расстояний сменяют другие, служащие, как правило, основой для последующих. Точность оценки расстояний ограничивается либо точностью самого грубого из методов, либо точностью измерения астрономической единицы длины (а.е.), величина к-рой по радиолокац.
- гравитационно связанные группы звезд, имеющих общее происхождение, близкий хим. состав и возраст; характерные объекты плоской составляющей Галактики. Известно ок. 1200 Р.з.с., находящихся в основном в пределах 2 кпк от Солнца. Более далекие скопления не наблюдаются из-за высокой звездной плотности Млечного Пути, на фоне к-рого далекие скопления теряются. Ожидаемое число Р.з.с.
- спец. радиоприемное устройство для исследоавния радиоизлучения космич. объектов в диапазоне от декаметровых до миллиметровых длин волн (в пределах т.н. окон прозрачности земной атмосферы для радиоволн). Р. состоит из двух осн. элементов: антенного устройства и приемного устройства - радиометра. Радиометр усиливает принятое антенной радиоизлучение и преобразует его в форму, удобную для регистрации и дальнейшей обработки. |
|