Rambler's Top100Astronet    
  по текстам   по ключевым словам   в глоссарии   по сайтам   перевод   по каталогу
 
На сайте
Астрометрия
Астрономические инструменты
Астрономическое образование
Астрофизика
История астрономии
Космонавтика, исследование космоса
Любительская астрономия
Планеты и Солнечная система
Солнце

Тяготение

1. Закон всемирного тяготения Ньютона и уравнение Пуассона
2. Движение тел под действием сил тяготения
3. Ускорение и тяготение
4. Релятивистская механика и теория поля
5. Кривизна пространства-времени в ОТО
6. Уравнения Эйштейна
7. Слабые гравитационные поля и наблюдамеые эффекты
8. Тяготение и квантовая физика

1. Закон всемирного тяготения Ньютона и уравнение Пуассона

Закон всемирного тяготения был сформулирован И. Ньютоном в 1687 г. При его выводе Ньютон опирался на работы своих великих предшественников - Г. Галилея (1638 г.) и И. Кеплера (1627 г.). Согласно Закону всемирного тяготения, два точечных тела с массами и притягивают друг друга с силой
$F=G{m_1 m_2\over {r^2}}$ , (1)
где r - расстояние между телами, G - гравитационная постоянная (термины гравитация и тяготение равнозначны).

Ускорение, к-рое испытывает тело m2, находящееся на расстоянии r от данного тела m1, равно:
$a_2={F\over{m_2}}=G{m_1\over {r^2}}$ .
Эта величина не зависит от природы (состава) и массы тела, получающего ускорение. В этом соотношении выражается экспериментальный факт, известный еще Галилаю, согласно к-рому все тела падают в гравитац. поле Земли с одинаковым ускорением.

Ньютон установил, что ускорение и сила обратно пропорциональны $r^2$, сопоставив ускорение тел, падающих вблизи поверхности Земли, с ускорением, с к-рым движется Луна по своей орбите. (Радиус Земли приблизительное расстояние до Луны были к тому времени известны.) Далее было показано, что из закона всемирного тяготения следуют законы Кеплера, к-рые были найдены И. Кеплером путем обработки многочисленных наблюдений за движениями планет. Так возникла небесная механика. Блестящим подтверждением ньютоновской теории Т. было предсказание существования планеты за Ураном (англ. астроном Дж. Адамс, франц. астроном У. Леверье, 1843-45 гг.) и открытие этой планеты, к-рую назвали Нептун (нем. астроном И. Галле, 1846 г.).

В ф-лы, описывающие движение планет, входит произведение G и массы Солнца ${\mathfrak M}_\odot$, оно известно с большой точностью. Для определения же константы G требуются лабораторные опыты по измерению силы гравитац. взаимодействия двух тел с известной массой. Первый такой опыт был поставлен англ. ученым Г. Кавендишем (1798 г.). Зная G, удается определить абс. значение массы Солнца, Земли и др .небесных тел.

Закон тяготения в форме (1) непосредственно применим к точечным телам. Можно показать, что он справедлив и дял протяженных тел со сферически-симметричным распределением массы, причем r есть расстояние между центрами симмтерии тел. Для сферич. тел, расположенных достаточно далеко друг от друга, закон (1) справедлив приближенно.

В ходе развития теории Т. представление о непосредственном силовом взаимодействии тел постепенно уступило место представлению о поле. Гравитац. поле в теории Ньютона характеризуется потенциалом $\varphi(x,y,z,t)$, где x,y,z - координаты, t - время, а также напряженностью поля $g=-\nabla\varphi$, т.е.
$g_x=-{\partial\varphi\over{\partial x}} , g_y=-{\partial\varphi\over{\partial y}} , g_z=-{\partial\varphi\over{\partial z}}$ .
Потенциал гравитац. поля, создаваемого совокупностью покоящихся масс, не зависит от времени. Гравитац. потенциалы неск. тел удовлетворяют принципы суперпозиции, т.е. потенциал к.-л. точке их общего поля равен сумме потенциалов рассматриваемых тел.

Предполагается, что гравитац. поле описывается в инерциальной системе координат, т.е. в системе координат, относительно к-рой тело сохраняет состояние покоя или равномерного прямолинейного движения, если на него не действуют никакие силы. В гравитац. поле сила, действующая на частицу вещества, равна произведению ее массы на напряженность поля в месте нахождения частицы: F=mg. Ускорение частицы относительно инерциальной системы координат (т.н. абс. ускорение) есть, очевидно, g.

Точечное тело с массой dm создает гравитац. потенциал
$\varphi=-G{dm\over r}$ .
Сплошная среда, распределенная в пространстве с плотностью $\rho(x,y,z)$ ($\rho$ может зависеть и от времени), создает гравитац. потенциал, равный сумме потенциалов всех элементов среды. В этом случае напряженность поля выражается как векторная сумма напряженностей, создаваемых всеми частицами.

Гравитац. потенциал подчиняется ур-нию Пуассона:
$\Delta \varphi \equiv {\partial^2\varphi\over{\partial x^2}} + {\partial^2\varphi\over{\partial y^2}} + {\partial^2\varphi\over{\partial z^2}} = 4\pi G\rho$ . (2)

Ясно, что потенциал изолированного сферически-симметричного тела зависит только от r. Вне такого тела потенциал совпадает с потенциалом точечного тела, расположенного в центре симметрии и имеющего ту же массу m. Если $\rho=0$ при r>R , то $\varphi=-G{m\over r}$ при r>R . Тем самым обосновывается приближение материальных точек в небесной механике, где обычно имеют дело с почти сферич. телами, находящимися, к тому же, достаточно далеко друг от друга. Точное ур-ние Пуассноа с учетом реального, несимметричного распределения масс используется, напр., при изучении строения Земли методами гравиметрии. Закон Т. в форме ур-ния Пуассона применяется при теоретич. исследовании строения звезд. В звездах сила Т., изменяющаяся от точки к точке, уравновешивается градиентом давления; во вращающихся звездах к градиенту давления добавляется центробежная сила.

Отметим нек-рые принципиальные особенности классич. теории Т.
1) В ур-нии движения материального тела - второй закон механики Ньютона, ma=F (где F - действующая сила, a - приобретаемое телом ускорение), и в закон тяготения Ньютона входит одна и та же характеристика тела - его масса. Тем самым подразумевается, что инертная масса тела и его гравитац. масса равны (подробнее см. в разделе 3).

2) Мгновенное значение гравитац. потенциала полностью определяется мгновенным распределением масс во всем пространстве и предельными условиями для потенциала на бесконечности. Для ограниченных рапределений вещества принимают условие обращения $\varphi$ в ноль на бесконечности (при $r\to \infty$). Добавление к потенциалу постоянного слагаемого нарушает условие $\varphi=0$ на бесконечности, но не изменяет напряженность поля g и не изменяет ур-ния движения материальных тел в данном поле.

3) Переход в соответствии с преобразованиями Галилея (x'=x-vt, t'=t) от одной инерциальной системы координат к другой, движущейся относительно первой с постоянной скоростью v, не изменяет ур-ние Пуассона и не изменяет ур-ния движения материальных тел. Другими словами, механика, включая ньютоновскую теорию Т., инвариантна относительно преобразований Галилея.

4) Переход от инерциальной системы координат к ускорению движущейся с ускорением a(t) (без вращения) не изменяет ур-ние Пуассона, но приводит к появлению дополнительного, не зависящего от координат члена ma в ур-ниях движения. Точно такой же челн в ур-ниях движения возникает, если в инерциальной системе координат к гравитац. потенциалу добавить слагаемое, линейно зависящее от координат, $\varphi'=-{\bf a}(t){\bf x}$, т.е. добавить однородное поле Т. Т.о., однородное поле Т. может быть скомпенсировано в условиях ускоренного движения.

2. Движение тел под действием сил тяготения

Важнейшей задачей ньютоновской небесной механики явл. задача движения двух точечных материальных тел, взаимодействующих гравитационно. Для ее решения, используя закон тяготения Ньютона, составляют ур-ния движения тел. Св-ва решений этих ур-ний известны с исчерпывающей полнотой. По известному решению можно установить, что нек-рые величины, характеризующие систему, остаются постоянными во времени. Их называют интегралами движения. Осн. интегралами движения (сохраняющимися величинами) явл. энергия, импульс, момент импульса системы. Для системы двух тел полная механич. энергия E, равная сумме кинетич. энергии (T) и потенциальной энергии (U), сохраняется:
E=T+U=const ,
где кинетич. энергия двух тел $T=1/2 m_1 v_1^2+1/2 m_2 v_2^2$ .

В классич. небесной механике потенциальная энергия обусловлена гравитац. взаимодействием тел. Для пары тел гравитационная (потенциальная) энергия равна:
$U=-G m_1 m_2/r=1/2 m_1 \varphi_2+1/2 m_2 \varphi_1$ ,
где $\varphi_2$ - гравитац. потенциал, создаваемый массой m2 в точке нахождения массы m1, а $\varphi_1$ - потенциал, создаваемый массой m1 в точке нахождения массы m2. Нулевым значением U обладают тела, разнесенные на бесконечно большое расстояние. Поскольку при сближении тел их кинетич. энергия увеличивается, а потенциальная энергия уменьшается, то, следовательно, знак U отрицательный.

Для стационарных гравитирующих систем ср. значение абс. величины гравитац. энергии в два раза больше ср. значения кинетич. энергии частиц, составляющих систему (см. Вириала теорема). Так, напр., для малой массы m, вращающейся по круговой орбите вокруг центрального тела ${\mathfrak M}$, условие равенства центробежной силы mv2/r силе тяготения $G{\mathfrak M}m/r^2$ приводит к $v^2=G{\mathfrak M}/r$, т.е. кинетич. энергия $T=1/2 mv^2=1/2 G{\mathfrak M}/r$, тогда как $U=G{\mathfrak M}m/r$ . Следовательно, U=-2T и E=U+T=-T=const < 0. Из последнего следует, что отбор энергии увеличивает кинетич. энергию.

В ньютоновской теории Т. изменение положения частицы мгновенно приводит к изменению поля во всем пространстве (гравитац. взаимодействие осуществляется с бесконечной скоростью). Другими словами, в классич. теории Т. поле служит целям описания мгновенного взаимодействия на расстоянии, оно не обладает собст. степенями свободы, не может распространяться и излучаться. Ясно, что такое представление о гравитац. поле справеливо лишь приближенно при достаточно медленных движениях источников. Учет конечной скорости распространения гравитац. взаимодействия производится в релятисвистской теории Т. (см. ниже).

В нерелятивистской теории Т. полная механическая энергия системы тел (включающая энергию гравитац. взаимодействия) должна оставаться неизменной бесконечно долго. Теория Ньютона допускает систематич. уменьшение этой энергии только при наличии диссипации, связанной с превращением части энергии в теплоту, напр. при неупругих столкновениях тел. Если тела вязкие, то их деформации и колебания при движении в гравитац. поле также уменьшают энергию системы тел за счет превращения энергии в теплоту.

3. Ускорение и тяготение

Инертной массой тела (mi) называют величину, характеризующую его способность приобретать то или иное ускорение под действием заданной силы. Инертная масса входит во второй закон механики Ньютона. Гравитац. масса (mg) характеризует способность тела создавать то или иное поле Т. Гравитаци. масса входит в закон Т.

Из опытов Галилея с той точностью, с к-рой они были поставлены, следовало, что все тела падают с одинаковым ускорением, вне зависимости от их природы и инертной массы. Это означает, что сила, с к-рой действует Земля на эти тела, зависит только от их инертной массы, причем сила пропорциональна инертной массе рассматриваемого тела. Но по третьему закону Ньютона изучаемое тело действует на Землю точно с такой же силой, с какой Земля действует на тело. Следовательно, создаваемая падающим телом сила зависит только от одной из его характеристик - инертной массы - и пропорциональна ей. В то же время падающее тело действует на Землю с силой, определяемой гравитац. массой тела. Т.о., для всех тел гравитац. масса пропорциональна инертной. Считая mi и mg просто совпадающими, находят из экспериментов конкретное численное значение постоянной G.

Пропорциональность инертной и гравитац. масс у тел различной природы была предметом исследования в опытах венг. физика Р. Этвеша (1922 г.), амер. физика Р. Дикке (1964 г.) и советского физика В.Б. Брагинского (1971 г.). Она проверена в лаборатории с высокой точностью (с погрешностью < 10-12).

Высокая точность этих экспериментов позволяет оценить влияние на массу различных видов энергии связи между частицами тела (см. Дефект массы). Пропорциональность инертной и гравитац. масс означает, что физ. взаимодействия внутри тела одинаковым образом участвуют в создании его инертной и гравитац. масс.

Относительно системы координат, движущейся с ускорением a, все свободные тела приобретают одинаковое ускорение -a. Из-за равенства инертной и гравитац. массвсе они приобретают такое же ускорение относительно инерциальной системы координат под воздействием гравитац. поля с напряженностью g=-a. Именно поэтому можно сказать, что с точки зрения законов механики однородное гравитац. поле неотличимо от поля ускорений. В неоднородном гравитац. поле компенсация напряженности поля ускорением сразу во всемпространстве невозможна. Однако напрженность поля может быть скомпенсирована ускорением специально подобранной системы координат вдоль всей траектории тела, свободно движущегося под действием сил Т. Такая система координат наз. свободно падающей. В ней имеет место явление невесомости.

Движение космич. корабля (ИСЗ) в поле Т. Земли можно рассматривать как движение падающей системы координат. Ускорение космонавтов и всех предметов на корабле относительно Земли одинаково и равно ускорению свободного падения, а относительно друг друга практически равно нулю, поэтому они находятся в невесомости.

При свободном падении в неоднородном гравитац. полекомпенсация напряженности поля ускорением не может быть повсеместной, поскольку ускорение соседних свободно падающих частиц не совсем одинаково, т.е. частицы обладают относительным ускорением. В космич. корабле относительные ускорения практически незаметны, поскольку по порядку величины они составляют $G{\mathfrak M}_\oplus x/r^3 \approx 5\cdot 10^{-8}$ см/с2, где r - расстояние от корабля до центра Земли, ${\mathfrak M}_\oplus$ - масса Земли, x - размер корабля. Этими ускорениями можно пренебречь и ситать гравитац. поле Земли на расстоянии r от ее центра однородным в объеме с характерным размером x. В любом заданном объеме пространства неоднородность гравитац. поля может быть установлена наблюдениями достаточно высокой точности, но при любой заданной точности наблюдений можно указать объем пространства, в к-ром поле будет выглядеть однородным.

Относительные ускорения проявляют себя, напр., на Земле в виде океанских приливов. Сила, с к-рой Луна притягивает Землю, различна в разных точках Земли. Ближайшие к Луне части водной поверхно