Rambler's Top100Astronet    
  по текстам   по ключевым словам   в глоссарии   по сайтам   перевод   по каталогу
 

Методы определения расстояний до галактик

Методы определения расстояний до галактик

Игорь Дроздовский

Астрономический Институт Санкт-Петербургского Университета
Санкт-Петербург, 1997



Содержание.

Введение.

Краткий обзор основных методов определения расстояний до галактик.

1.Цефеиды.

2.Сверхгиганты.

3.Красные гиганты.

4.Метод флюктуаций поверхностной яркости.

5.Шаровые скопления.

6.Планетарные туманности.

7.Новые звезды.

8.Сверхновые.

9.Зависимость Талли-Фишера.

10.Зависимость Фабер-Джексона.

11.Новые методы и перспективы на будущее.

Библиография.

Введение.

Построение точной шкалы расстояний во Вселенной является одной из фундаментальных проблем современной науки. В настоящее время в астрономии нет единого универсального способа определения расстояний до небесных тел. По мере перехода от близких объектов к более далеким один метод определения расстояний заменяется другим, причем каждый предыдущий обычно служит основой для последующего. Следует отметить, что прямые методы оценки расстояний, такие как измерение тригонометрических параллаксов, применимы всего лишь до расстояний не превышающих 100 пк. Расстояния до более далеких звезд, галактик, скоплений галактик приходится определять косвенными методами с использованием тех или иных космических индикаторов, характеристики которых нам известны. Ошибки при построении шкалы космических расстояний велики и чаще всего вызваны ошибками в отождествлении космических эталонов и неточностью их калибровки. И лишь в последние годы, благодаря прогрессу в наблюдательной астрофизике,удалось измерить расстояния до некоторых галактик с ошибкой не превышающей 20 %.

Детальные обзоры основных методов определения расстояний приводятся во многих работах (например, [1,2]). 

Distance Methods in Extragalactig Astrophysics

Выбор того или иного метода зависит от многих факторов. Основными из них являются:

  1. наблюдательные возможности (разрешается ли данная галактика на звезды, шаровые скопления или другие объекты);
  2. морфологический тип галактики;
  3. приемлемая точность определения расстояния и трудоемкость метода.

Продемонстрируем сравнение точности различных методов на примере оценки расстояния до скопления галактик в Деве - одного из ключевых вопросов современной астрофизики: Совокупные ошибки в оценке расстояния до скопления в Деве
Тип неопределенностей sigma(m-M)
(зв.вел.)
TRGB
     неопределенность фотометрического нуль-пункта HST +/-0.03
     ошибки моделей Функции Светимости красных гигантов +/-0.06
     ошибки в оценке поглощения света в направлении Девы+/-0.02
     внутренее рассеяние калибровки MI (TRGB)+/-0.10
     неопределенность шкалы расстояний шаровых скоплений+/-0.10
     геометрическая глубина ядра скопления в Деве (+/-1 Мпк)+/-0.13
 
Полная ошибка метода TRGB (для одной галактики)+/-0.20
Цефеиды
     переход в PL от БМО к спиральным галактикам Девы+/-0.17
     в оценке металличности цефеид+/-0.05
     в оценке расстояния до БМО+/-0.10
     в оценке отношения поглощения в направлении БМО и Девы+/-0.02
     геометрическая глубина спиральных галактик в Деве (+/-3 Мпк)+/-0.35
 
Полная ошибка метода Цефеид (для одной галактики)+/-0.41
Планетарные туманности
     в построении наблюдаемых ФСПТ+/-0.10
     фотометрический нуль-пункт и калибровка фильтров+/-0.06
     в оценке отношения поглощения в направлении M31 и Девы+/-0.02
     в оценке расстояния до M31+/-0.10
     в определении опорной модели ФСПТ+/-0.05
     геометрическая глубина ядра скопления в Деве (+/-1 Мпк)+/-0.13
 
Полная ошибка метода ФСПТ (для одной галактики)+/-0.21

Краткий обзор основных методов определения расстояний до галактик.

1. Цефеиды.

Цефеиды на данное время остаются наиболее точными индикаторами расстояний на промежутке до 10 Мпк. Яркости цефеид заключены в пределах -2m >Mv> -6m и, вследствие переменности их блеска, они легко выявляются и классифицируются.

Классические цефеиды (I-го типа населения) - это молодые объекты, принадлежащие дисковой составляющей: они обнаруживаются в галактиках, в которых до недавнего времени происходило звездообразование, т.е. в S и Irr-галактиках. Периоды цефеид от нескольких дней до несколько сот дней.

Для получения расстояния по цефеидам требуются достаточно большие и точные ряды наблюдений. Но даже, если известен абсолютно точно период одной из цефеид в галактике, то ошибка в определяемом расстоянии составит около 30%. Причиной этого является разброс значений в зависимости период-светимость-цвет(PLC) - ширина полосы разброса, например, в цвете B - 1.2m; в V - 0.9m; а в B-V ~0.4m [3]. Для повышения точности требуется искать как можно больше цефеид в наблюдаемой галактике. В итоге ошибку можно свести к 10%. Кроме того, необходимо учитывать ошибку калибровки нуль-пункта соотношений PL и PC, которые определяются по цефеидам БМО и ММО, а также ошибки фотометрии.

В настоящий момент основные факторы, влияющие на неопределенность оценки расстояния до галактик по цефеидам, следующие:

  1. Недостаточное число наблюдаемых цефеид;
  2. Неточность в определении расстояния до БМО и ММО(+/-0.13m), цефеиды которых используют для калибровки соотношения PLC;
  3. Неточность в оценке яркости цефеиды, вследствие отсутствия возможности точно учесть неравномерность поглощения света в галактике.

Большая трудоемкость и необходимость длительных рядов наблюдений привели к появлению вторичных индикаторов расстояний, которые калибруются, в основном, по цефеидам.

2. Сверхгиганты.

Для близких галактик,разрешимых на звезды (до 25 Мпк), в качестве "стандартной свечи" бывает целесообразно использовать ярчайшие звезды (голубые и красные сверхгиганты - BSG и RSG). Такие звезды представляют интерес еще и как предельные по массе и светимости образцы звезд.

Голубые сверхгиганты можно использовать для проверки Эддингтоновского предела светимости, поскольку ярчайшие из них находятся у этого предела, когда в звезде в равновесии световое давление и сила гравитации. У ярчайших BSG Mb= -10m+/-0.15m. Поэтому они различимы при современном уровне наблюдений до m-M=34m (т.е. до 60 Мпк).

Физические причины существования предела светимости у RSG не до конца ясны, хотя наличие этого предела установлено эмпирически. Красные сверхгиганты также используют для проверки теории эволюции массивных звезд. Абсолютные болометрические звездные величины RSG порядка -9.5m.

Важным событием в деле оценки расстояния до галактик с помощью ярчайших звезд стало использование зависимости между абсолютной звездной величиной ярчайших сверхгигантов и светимостью их родительской галактики, которая обсуждалась еще в работах Хаббла. Вид этой зависимости различен для BSG и RSG.

При использовании ярчайших звезд,как и при любом другом методе, основанном на небольшом числе экстремальных объектов в галактиках необходимо учитывать эффекты селекции.

3. Красные гиганты.

Sandage в 1971 году нашел [4], что ярчайшие красные гиганты имеют сходную абсолютную звездную величину Mv = -3.0m+/-0.2m и что их можно использовать для оценок расстояний. В наше время полагают, что эти красные звезды представляют либо крайнюю точку первого подъема ветви красных гигантов (RGB) звезд малых масс, либо более яркую асимптотическую ветвь гигантов (AGB).

Точность оценок расстояний (+/-0.2m) почти сравнима с первичными индикаторами расстояний: с цефеидами или звездами типа RR Лиры. Метод в то же время имеет ряд достоинств в сравнении с цефеидами и звездами типа RR Лиры:

  1. Наблюдения показали, что ITRGB в интервале ошибок +/-0.1m не чувствительна к металличности [Fe/H] < -0.7 dex;
  2. Метод требует гораздо меньше наблюдательного времени, чем для переменных звезд;
  3. Абсолютная звездная величина в цвете I для TRGB MI = -4m, что на 4m ярче, чем у звезд типа RR Лиры;
  4. По сравнению с цефеидами, красные гиганты могут располагаться вдалеке от областей звездообразования,что уменьшает влияние поглощения на их звездную величину.
При современном уровне наземных телескопов метод может успешно применяться к галактикам, находящимся на расстояниях до (m-M)=28m (~4 Мпк - порядка расстояния до группы M81) [5].

4. Метод флюктуаций поверхностной яркости.

Разрешимые на звезды галактики дают возможность изучать в них историю звездообразования, выделять отдельные типы звезд (сверхгиганты, цефеиды) и определять по ним расстояния до галактик. Однако большинство галактик не разрешается на звезды (в силу недостаточного углового разрешения), хотя приемники излучения способны зарегистрировать достаточное число фотонов от ярчайших звезд. Поэтому закономерным развитием метода ярчайших звезд стал метод флюктуаций поверхностной яркости, который можно использовать для эллиптических галактик или для балджей некоторых спиралей.

На практике после первичных редукций из кадра вычитается сглаженное изображение галактики и дальнейшие оценки флюктуаций проводят по остаточному изображению.Важной проблемой на этом этапе является правильное исключение из кадра всех артефактов, которые могут привести к неправильной оценке флюктуаций: проектирующиеся звезды фона и другие посторонние объекты, дефектные пиксели и области содержащие пыль. Получающиеся флюктуации поверхностной яркости подвергают двумерному преобразованию Фурье, что позволяет отделить шум считывания, космические частицы и дробовой шум фотонов, которые имеют спектр мощности белого шума , а также случайные флюктуации, звезды, шаровые скопления и галактики фона ,которые не были исключены из данных в силу схожести их спектра со спектром функции рассеяния точки.

Метод флюктуаций поверхностной яркости применим, в основном, к ранним типам галактик в силу двух причин:

  1. В эллиптических и линзовидных галактиках меньше пыли, значит меньше и поглощение света;
  2. В них, в силу большой дисперсии скоростей,не образуются структуры, подобные спиральным рукавам, которые приводят к тому, что флюктуации от пикселя к пикселю уже не являются случайными.
Для оценки флюктуаций наиболее предпочтителен фильтр I в силу двух причин:


Калибровка нуль-пункта MI может проводится тремя путями:

  1. с помощью моделирования звездного населения в галактиках;
  2. по шаровым скоплениям Галактики;
  3. по галактикам, принадлежащих Местной Группе.

Этот метод, дающий точность до 0.15m, на данное время является одним из наиболее точных методов.

5. Шаровые скопления.

Эти скопления старых звезд обнаруживаются в гало всех больших галактик.Типичные шаровые скопления имеют абсолютные звездные величины Mv = -7m (-7.5m), что сравнимо с яркостью сверхгигантов; а в гигантских эллиптических галактиках,которые могут содержать тысячи шаровых скоплений, ярчайшие из них могут достигать светимостей Mv~-11m, что превышает яркость любых других звездных индикаторов расстояний (за исключением сверхновых). Они обнаруживаются на расстояниях до 100 Мпк на крупнейших наземных телескопах.

Это все делает притягательным использование их в качестве "стандартных свечей".

В настоящее время используют два метода для оценки расстояний по ШЗС:

  1. Использование функции светимости [1];
  2. Использование дисперсии скоростей звезд в шаровых скоплениях [6]

Последний метод применим пока только к близким галактикам Местной Группы и является аналогом соотношения Faber - Jackson для эллиптических галактик.

Характерная форма интерполяционной кривой функции светимости в виде гауссианы позволяет использовать все множество наблюдаемых шаровых скоплений для оценки расстояния до их родительской галактики, что дает больше полезной информации о расстоянии, чем несколько ярчайших скоплений. Для оценки расстояния определяют максимум функции светимости mo, которая и является "стандартной свечей". Harris [7] показал, что абсолютная звездная величина Mo в максимуме функций светимости шаровых скоплений почти не зависит от светимости родительской галактики. Замечательным фактом является отсутствие различий между Mo шаровых скоплений в спиральных и эллиптических галактиках. Это дает возможность использовать шаровые скопления в качестве индикаторов относительных расстояний между галактиками различных морфологических типов.

Метод предпочтительно использовать для гигантских эллиптических галактик, которые содержат больше тысячи шаровых скоплений. Большим достоинством является также то, что шаровые скопления находятся чаще всего в гало галактик и вследствие этого на оценку расстояния не накладываются ошибки за различие внутреннего покраснения, за переналожение объектов и неправильное отождествление, а также за неправильный учет наклона галактики.

Средняя точность оценки расстояния по ФСШС порядка 0.4m для одной галактики. Предельные расстояния которые доступны с помощью этого метода, ограниченные возможностями современных наземных телескопов,порядка 50 Мпк.

6. Планетарные туманности.

Светимость молодых планетарных туманностей сравнима со светимостью ярчайших звезд и несмотря на то, что узкие интерференционные фильтры (шириной порядка 30A) в полосе [5007A] пропускают всего около 15% энергии, испускаемой этими яркими источниками,оставшаяся часть позволяет выделить их на изображениях близких галактик, в которых за счет выбора фильтра подавлены основные звезды. В больших близких галактиках таким образом можно увидеть несколько сотен планетарных туманностей, функция светимостей которых имеет область значений порядка двух звездных величин. Вид функции светимостей хорошо представляется экспоненциальным законом, с учетом того, что в области предельно слабых звездных величин часто наблюдается завал.

Метод ФСПТ в основном применяется к галактикам ранних морфологических типов, в первую очередь в силу того, что для галактик поздних морфологических типов возрастает вероятность перепутать планетарные туманности с компактными областями HII.

Этот метод сравнительно новый и еще недостаточно хорошо исследована универсальность применения функции светимостей планетарных туманностей для различных галактик, хотя уже было отмечено пока еще плохо объясняемое отсутствие значимой корреляции между ФСПТ и металличностью, а также относительным возрастом звездного населения материнской галактики. Отмечена зависимость между светимостью родительской галактики и ФСПТ [8] (аналогично сверхгигантам).

7. Новые звезды.

Основой метода оценки расстояния по новым служит зависимость между их светимостью(звездной величиной) в максимуме и скоростью убывания яркости после вспышки, открытая в 1936 году Zwicky.

Для оценки расстояния по этому методу необходимо измерить видимую звездную величину новой как можно ближе к максимуму светимости и значение скорости убывания светимости,когда яркость уменьшается на 2 звездные величины после максимума.

Суммарная ошибка оценки расстояния по кривым убывания новых составляет порядка +0.4m.

Кроме описанного выше способа оценки расстояния в различных работах были предложены другие индикаторы расстояний, связанные с новыми, кратко описанные в [1], и дающие сходные точности:

  1. Средняя звездная величина всех наблюденных новых в данной галактике на 15 день после максимума (<M15> = -5.60m+0.14m);
  2. Функция светимости новых: а) в максимуме светимости (близка к гауссиане); б) в минимуме между первым и повторным пиками - для соответствующих новых; в) интегральная функция светимостей новых в максимуме (линейна в широком диапазоне звездных величин и имеет практически постоянный наклон);
  3. Зависимость между промежутком видимости новой и некоторой абсолютной звездной величиной в некоторый фиксированный момент от начала вспышки.

8. Сверхновые.

Сверхновые - чрезвычайно яркие (Mb = -19.5m) точечные источники и вследствие этого рассматриваются как одни из наиболее привлекательных стандартных источников для больших расстояний (порядка 50 Мпк).

Сверхновые I типа (SNeI) выделяются отсутствием водорода и гелия в их оптическом спектре и имеют подклассы Ia, Ib, Ic [9].

Относительная одинаковость кривых блеска и схожесть эволюции спектров SNeIa привели к тому, что их часто используют для определения космологических параметров H0 и q0 [10]. Этот тип сверхновых является к тому же ярчайшим среди остальных типов.

Вспышка SN 1987A в БМО возвратила интерес к использованию метода Baade-Wesselinka для оценки геометрического размера расширяющейся фотосферы SNeII, калибровку которого связывают с этой сверхновой (она также дала на сегодняшний момент наибольшую точность для калибровки нуль-пункта цефеид).

В принципе можно использовать и сверхновые типов Ib, Ic и II-L, но они и слабее и вспыхивают реже.

Небольшое количество зарегистрированных сверхновых не дает пока возможность оценить универсальность применимости этого метода, и улучшить точность калибровки.

Выше перечисленные методы относились в основном к чисто фотометрическим. Методы, о котором речь пойдет далее, помимо фотометрических параметров требуют наблюдений лучевых скоростей и потому их можно назвать динамическими.

9. Зависимость Талли-Фишера.

Исторически первым появился на свет метод, который в наши дни известен как метод Талли-Фишера, хотя, как указывается в [1], сходный метод применял для оценки расстояния до M31 Opik еще в 1922 году. Талли и Фишер в 1977 в своей работе [11] были первыми, кто отстаивал применимость использования для определения расстояний метода, в котором устанавливалась эмпирическая зависимость между светимостью галактики позднего типа и шириной линии 21 см (т.е. скоростью вращения галактики).

Для оценки расстояния по методу ТФ необходимо получить видимые звездные величины галактик из некоторой выборки, исправленные за поглощение света в Млечном Пути и внутреннее поглощение в каждой галактике, а также каким-либо способом измеренные скорости вращения, исправленные за наклон галактик.

Галактики, сильно наклоненные к лучу зрения, наиболее удобны для анализа расстояния по ТФ-зависимости, т.к. соответствующие поправки в ротационные скорости малы, хотя в то же время растут поправки за внутреннее поглощение (особенно сильно поглощение проявляется в фотометрической полосе B). При оценке расстояний в этой области длин волн зависимость Талли-Фишера имеет наибольшую дисперсию (>0.5) [12] вследствие:

    а) больших неопределенностей в поправке за поглощение света;
    б) большая часть голубого света галактики может приходить от голубых коротко живущих звезд галактики, которые составляют малую часть массы галактики;
    в) роста неточностей в определении наклона галактики , причина которых - большая чувствительности полосы B к пыли и областям HII, которые в первую очередь связаны со спиральными рукавами.

Спиральные и иррегулярные галактики наблюдаются как в богатых скопления галактик, так и по одиночке. Метод ТФ наиболее полезен для проведения массовых статистических работ в скоплениях далеких галактик для оценки структуры Вселенной на больших расстояниях.

10. Зависимость Фабер-Джексона.

Фундамент, на основе которого был предложен метод Dn-sigma, - корреляция между светимостью нормальных эллиптических галактик и дисперсией их центральных скоростей, открытая Фабер и Джексоном в 1976 году [13]. В последствии от светимости галактики перешли к другому связанному с ней параметру Dn, который определяется как диаметр галактики до изофоты с поверхностной яркостью в цвете B 20.75 mag/[]" [14]. Этот параметр приводит к меньшим ошибкам, чем использование полных звездных величин. Он хорошо определяется, если приближать профиль E-галактики известным законом Вакулера "r1/4".

Наибольшую пользу метод может принести, если использовать его для измерений относительных расстояний между галактиками.

11. Новые методы и перспективы на будущее.

В последнее время были предложены и другие способы оценки расстояний. Вероятно, некоторые из них со временем займут соответствующее место в выше перечисленной цепочке по оценке расстояний во Вселенной. Пока же универсальность применимости этих методов недостаточно изучена и поэтому перечислим лишь некоторые из них:

  1. на возможность использования молекулярных колец в галактиках для оценки расстояния было указано в работе [15];
  2. в [16] предложено использовать рассеянные скопления в качестве стандартных источников;
  3. в работах [17,18] использовались углеродные звезды для оценки расстояния до NGC 55;
  4. по желтым сверхгигантам (YSG) оценили расстояние до NGC 4523 в статье [19].
  5. получает все большее распространение метод гравитационного линзирования, описание которого можно найти, например в [22];
  6. описание метода оценки расстояний на основе "эффекта Сюняева - Зельдовича" приведено в [23];
  7. используя теоретическое предположение о гравитационной устойчивости газового диска галактики с известным распределением плотности газа и кривой вращения, Засов и Бизяев ("метод Засова") предложили новый метод оценок расстояний, используя который они пришли к короткой шкале расстояний H0 = 90 км/сек/Мпк [24].

За последнее время произошли серьезные изменения в методике оценок внегалактических расстояний: были введены новые методы, исключены некоторые старые, дающие небольшую точность (например, метод оценок расстояний по размерам областей HII), были изучены различные фотометрические поправки (например,за поглощение,за металличность, за тип и светимость родительской галактики и т.п.), статистические поправки (эффект Malmquist'а [20,21]), были пересмотрены оценки точности для разных методов и т.д. Дальнейший прогресс связан с более точной калибровкой всех "стандартных свечей", с учетом новых эффектов и зависимостей, что в основном определяется развитием как наблюдательной базы, так и продвижением теоретических исследований.

Библиография.

[1] Jacoby,G.H. et al.,1992,Publ.of Astron.Soc.of Pacific, Vol.104,No.678,p.599-662

[2] Van den Bergh.,1992,Publ.of Astron.Soc.of Pacific, Vol.106,No.680

[3] Freedman,W.L.,Madore B.F.,1990,Astrophysical Journal, Vol.365,p.186

[4] Sandage,A.R.,1971,in Nuclei of Galaxies, ed.D.J.K.O'Connel,p.601

[5] Lee,M.G.,Freedman,W.L.,Madore,B.F.,1993,Astrophysical Journal, Vol.417,p.553-559

[6] Paturel,G.,Garnier,R.,1992,Astron.& Astroph.Journal, Vol.254,No1-2,p.93-95

[7] Harris,W.E.,1991,Ann.Rev.Astr.Ap., Vol.29,p.543

[8] Bottinelli,L. et al.,1991,Astron.& Astroph.Journal, Vol.252,No2,p.550-556

[9] Branch,D. et al.,1991,Comment.on Ap., Vol.XV,p.221

[10] Branch,D.,Tammann,G.A.,1992,Ann.Rev.Astr.Ap., Vol.30,p.359

[11] Tully,R.B.,Fisher,J.R.,1977,Astron.& Astroph.Journal, Vol.54,p.661

[12] Guhathakurta,P. et al.,1993,Publ.of Astron.Soc.of Pacific, Vol.105,p.1022-1027

[13] Faber,S.M.,Jackson,R.E.,1976,Astrophysical Journal, Vol.204,p.668

[14] Dressler,A. et al.,1987,Astrophysical Journal, Vol.313,p.43

[15] Sofue,Y.,1991,Publ.of Astr.Soc. of Japan, Vol.43,No5,p.671-684

[16] Janes,K.A. et al.,1992,Mem.Soc.Astron.Italiana, Vol.63,No2,p.283

[17] Pritchet,C.J. et al.,1987,Astrophysical Journal, Vol.316,p.517

[18] Pritchet,C.J. et al.,1987,Astrophysical Journal, Vol.318,p.507

[19] Shanks,T.,Tanvir,N.R. et al.,1992,Mon.Not.of Royal.Astr.Soc., Vol.256,p.29

[20] Hendry,M,A.,Simmons,J.F.L.,1990,Astron.& Astroph.Journal, Vol.237,p.275-282

[21] Luri,X. et al.,1993,Astron.& Astroph.Journal, Vol.267,p.305-307

[22] Dahle,H.,Maddot,S. et al.,1994,Astrophysical Journal (Lett.), Vol.435,L.79

[23] McHardy,J.,Stewart,G. et al.,1990,MNRAS, Vol.242,p.215

[24] Бизяев,Д.,В.,1997,АЖ, Том 74,N2,стр.172-176

Публикации с ключевыми словами: Сверхновые - Местная группа галактик - красный гигант - Магеллановы Облака - Цефеиды - Скопление галактик - местное сверхскопление - шкала расстояний - функция светимостей галактик - зависимость Талли-Фишера - зависимость Фабер-Джонсона - звезды типа RR Лиры - Плеяды - Постоянная Хаббла - Шаровое скопление
Публикации со словами: Сверхновые - Местная группа галактик - красный гигант - Магеллановы Облака - Цефеиды - Скопление галактик - местное сверхскопление - шкала расстояний - функция светимостей галактик - зависимость Талли-Фишера - зависимость Фабер-Джонсона - звезды типа RR Лиры - Плеяды - Постоянная Хаббла - Шаровое скопление
См. также:
Все публикации на ту же тему >>

Оценка: 3.1 [голосов: 168]
 
О рейтинге
Версия для печати Распечатать

Астрометрия - Астрономические инструменты - Астрономическое образование - Астрофизика - История астрономии - Космонавтика, исследование космоса - Любительская астрономия - Планеты и Солнечная система - Солнце


Астронет | Научная сеть | ГАИШ МГУ | Поиск по МГУ | О проекте | Авторам

Комментарии, вопросы? Пишите: info@astronet.ru или сюда

Rambler's Top100 Яндекс цитирования