Rambler's Top100Astronet    
  по текстам   по форуму  внутри темы
 

Космология

Список  /  Дерево
Пред. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | След.
[Новое сообщение] Форумы >> Обсуждение публикаций Астронета
Автор Сообщение
Л. П. Грищук, Я. Б. Зельдович,  "Физика Космоса", 1986
Космология 20.10.2002 20:56

1. Введение Космология - физ. учение о Вселенной как целом, основанное на наблюдательных данных и теоретич. выводах, относящихся к охваченной астрономич. наблюдениями части Вселенной. Теоретич. фундамент К. составляют осн. физ. теории (теория тяготения, теория эл.-магн. поля
>> Прочитать статью
Наверх
[Цитировать][Ответить][Новое сообщение]
В. М. Антонов
Re[13]: Космология 9.01.2019 6:09

14. Время Абсолютного времени в Природе нет, и бессмысленно его искать. Время это последовательность событий, происходящих на фоне других событий. Фоновыми событиями могут быть: облёт нашей планеты вокруг Солнца (год), или один оборот Земли вокруг своей оси (сутки), или колебания маятника (секунда), или струнные колебания атомного вихревого шнура (малые доли секунды), или какие-то другие.
Наверх
[Цитировать][Ответить][Новое сообщение]
В. М. Антонов
Re[14]: Космология 10.01.2019 6:08

15. Формирование атомов Главное различие атомов не в размерах исходных торовых вихрей, а в форме их свёрнутости. У атома водорода (наименьшего из атомов) форма кольцо; у дейтерия овал; у трития контур гантели; у гелия восьмёрка с перехлёстом. У более крупных атомов свёртывание исходных торовых вихрей усложняется от атома к атому. У окончательно свёрнутого атомного торового вихря можно выделить два характерных элемента: жёлоб и петлю. Жёлоб образуют два сомкнувшихся участка вихревого шнура. На концах жёлоба возникают петли. У жёлобов и у петель одна сторона присасывающая, а вторая отталкивающая. Жёлобы слипаются с жёлобами, а петли с петлями; между собой они не слипаются. 16. Механизм слипания атомов Притяжения в Природе нет; оно немыслимо. В основе слипания атомов не притяжение их друг к другу, а вытеснение эфирной средой в сторону меньшего давления. Всякие движения (согласно Первому закону Русской физики) порождают пустоту и, следовательно, понижение эфирного давления. Чем интенсивнее движения, тем больше снижается давление. В результате возникает уклон этого давления. Именно этот уклон и вытесняет атомы в направлении друг к другу. Всё в соответствии со Вторым законом Русской физики. Усилие вытеснения равно произведению уклона давления на объём внутриатомной пустоты вытесняемого атома. Вытеснение одного атома под уклон эфирного давления, создаваемого другим атомом, и есть слипание. Такой же механизм у налипания электронов на атомы.
Наверх
[Цитировать][Ответить][Новое сообщение]
В. М. Антонов
Re[15]: Космология 11.01.2019 6:38

17. Тепловые колебания атомов Если ударить по проволочному кольцу, оно задребезжит. Это означает, что кольцо разбивается на участки, и каждый участок колеблется как струна. То же самое происходит с атомным торовым вихрем, когда по нему ударяет соседний атом. Струнные колебания отдельных участков торовых вихрей и есть тепловые колебания атомов. Никакие другие движения атомов тепловыми не являются. Частота тепловых колебаний составляет порядка 1015 герц. Они регистрируются нашими тепловыми рецепторами; поэтому и называются тепловыми. Колеблются только те участки атомных вихревых шнуров, которым ничто не мешает. Этим определяется теплоёмкость различных веществ; чем меньше длина вихревых шнуров, охваченных тепловыми (струнными) колебаниями, тем меньше теплоёмкость вещества. 18. Тепловые волны Тепловые колебания атомов порождают в прилегающей сверхтекучей эфирной среде волны. Это и есть тепловые волны. По мере удаления от колеблющихся струн они быстро затухают и практически сходят нанет через несколько микрометров. Получается так, что тепловые волны как бы привязаны к своим источникам. Чем интенсивнее тепловые колебания струн атомных вихревых шнуров, тем дальше расходятся от них их тепловые волны. 19. Газообразность. Плазма. Крошево Тепловые колебания атомов ослабляют их слипание. Способствуют этому и тепловые волны: они накатываются на соседние атомы и отталкивают их. При повышении температуры может наступить такой момент, когда усилия отталкивания превысят усилия слипания и атомы разойдутся. Такой процесс называется испарением. Сначала испаряются молекулы; они слипаются между собой слабее, чем атомы в них. Удалившиеся друг от друга молекулы образуют газообразность. Сблизиться им мешают их же тепловые волны: накатываясь на соседей, они отталкивают их. Чем выше температура молекул, тем дальше они расходятся. У нагрева есть такой порог, когда разъединяются даже атомы в молекулах. Так образуется плазма. В состоянии плазмы атомы сбрасывают с себя прилипшие к ним электроны, и получается смесь разъединившихся атомов и электронов. При ещё большем нагреве (в несколько миллионов градусов) соударения атомов становятся настолько сильными, что разрушают их. Смесь атомных обрывков и электронов можно охарактеризовать как крошево. В состоянии крошева пребывает солнечная атмосфера. Её лёгкая фракция разносится светом по округе в виде так называемого Солнечного ветра.
Наверх
[Цитировать][Ответить][Новое сообщение]
В. М. Антонов
Re[16]: Космология 12.01.2019 6:17

20. Свет С увеличением размаха колебаний струн атомных вихревых шнуров тепловые волны расходятся всё дальше и дальше. И наступает такой момент (такой пороговый размах), когда тепловая волна срывается с источника и уходит в Пространство. Это уже световая волна. Частоты световых волн такие же, как и у тепловых волн, тоесть приблизительно 1015 герц. Пониженные частоты порождаются более длинными струнами вихревых шнуров и называются инфракрасным излучением. Повышенные частоты характерны для коротких струн и называются ультрафиолетом. Породив волну света, струна успокаивается. Поэтому световое излучение состоит в основном из одиночных фотонов ( из одиночных периодов). 21. Поглощение, отражение и переизлучение света Атомный вихревой шнур, на который накатилась волна фотона, может поглотить эту волну, отразить её или переизлучить. При поглощении раскачиваются тепловые колебания вихревого шнура (повышается его температура). Круто изогнутые шнуры (как у атомов металлов) отражают световые волны, и поэтому свежий срез металла блестит. Переизлучение световых волн происходит тогда, когда их частота совпадает с частотой тех участков (тех струн), на которые они упали. Струна сначала поглощает упавшую на неё световую волну, а затем уже порождает новую волну с той же частотой. Такое явление называется резонансом. Переизлучаются не все световые волны, а только резонирующие. Они-то и создают цвет предмета.
Наверх
[Цитировать][Ответить][Новое сообщение]
В. М. Антонов
Re[17]: Космология 13.01.2019 7:02

22. Радиоволны Эфирная среда наполнена электронами. Сам эфир является проводником всевозможных излучений (света, Рентгеновских волн, гамма-излучений), а находящиеся в нём электроны являются проводниками радиоволн. Основными источниками радиоволн в Космосе являются электрические разряды. Каждый такой разряд порождает одиночную радиоволну. Накатываясь на приёмную антенну, радиоволны заставляют её электроны смещаться по ней. 23. Рентгеновское излучение Рентгеновское излучение возникает тогда, когда быстролетящие электроны натыкаются на вихревые шнуры встретившихся на их пути атомов. Жёсткий удар налетевшего электрона не прогибает шнур, а деформирует его оболочку. Эти колебания уже не струнные, а оболочковые. В эфирной среде оболочковые колебания атомных вихревых шнуров порождают Рентгеновские волны. Они значительно короче световых волн. 24. Гамма-излучение Торцы разорванных атомных вихревых шнуров и их обрывков затыкаются эфирными шариками. При ударе по ним они начинают раздавливать электронные секции вихревого шнура одну за другой. Ступенчатое торцовое раздавливание вихревого шнура порождает в эфире продольные гамма-волны. Это и есть гамма-излучение. Длины гамма-волн короче Рентгеновских волн. Свет, радиоволны, Рентгеновское излучение и гамма-излучение широко используются в астрономических наблюдениях.
Наверх
[Цитировать][Ответить][Новое сообщение]
В. М. Антонов
Re[18]: Космология 14.01.2019 5:46

25. Круговорот движений во Вселенной

 

Движения приходят из пустоты Вселенной и уходят в ту же пустоту.

(В самой Метагалактике движения сохраняются неизменными.)

Возникают движения при столкновении нашей Метагалактики с чужими скоплениями эфира. Тогда движения превращаются в атомы. В них движения упаковываются в виде внутриатомной пустоты (пустота в сдавленной среде эквивалент энергии движений).

После многочисленных трансформаций движений в Метагалактике они (движения) могут превратиться в излучения, в которых каждый квант (в частности фотон) содержит свою порцию пустоты.

Уходящие за пределы Метагалактики излучения возвращают свои пустоты в Пустоту Вселенной.

Из Пустоты Вселенной движения приходят, туда же они и уходят.

Наверх
[Цитировать][Ответить][Новое сообщение]
В. М. Антонов
Re[19]: Космология 15.01.2019 5:32

26. Магнетизм Элементарным магнитиком является электрон. Он характеризуется двумя магнитными особенностями: наличием полюсов (северного и южного) и стороной обката (в какую сторону вращается). Собранные соосно в одну линию с одним направлением вращения электроны образуют магнитный шнур (магнитную силовую линию). Пучок магнитных шнуров с одним направлением вращения называется магнитным снопом. Выстраивает магнитные снопы уклон скоростей эфирных потоков, насыщенных электронами. И магнитные снопы, и магнитные шнуры характеризуются также наличием у них полюсов и сторон обката. В этом и состоит магнетизм.
Наверх
[Цитировать][Ответить][Новое сообщение]
В. М. Антонов
Re[20]: Космология 16.01.2019 6:36

27. Эфировороты планет и звёзд

 

При распаде атомов и электронов планет и звёзд высвобождаются внутриатомная и внутриэлектронная пустоты. Они заполняются стекающим со всех сторон эфиром.

Стекающий к планетам и звёздам эфир закручивается в эфировороты (наподобие водоворотов).

На полюсах планет и звёзд эфир движется к ним по винтовой линии. В средних широтах движение эфира напоминает сферические сходящиеся спирали. А на экваторах эфировороты представляют собой уже плоские сходящиеся спирали.

Подобные эфировороты есть у всех звёзд и планет. Земной эфироворот располагается на периферии Солнечного эфироворота. А Лунный эфироворот находится на периферии Земного.

Наверх
[Цитировать][Ответить][Новое сообщение]
В. М. Антонов
Re[21]: Космология 17.01.2019 6:12

28. Уклон эфирного давления в эфироворотах В потоке сходящегося к планетам и звёздам эфира уклон эфирного давления создаётся прежде всего по ходу потока, тоесть по касательной к спиралям. Но в эфировороте ещё больший уклон эфирного давления возникает в направлении к центру эфироворота. Это направление так называемый скорейший спуск. (Его можно зримо наблюдать в водовороте. Скорейший спуск в нём направлен к центру воронки, тоесть к сливному отверстию.) Именно направление скорейшего спуска определяет направление тяготения (тоесть вытеснения) во всех эфироворотах. 29. Тяготение Тяготение космических объектов и всех предметов это усилие вытеснения их внутриатомных пустот под местные уклоны эфирного давления в направлении скорейшего спуска. Формула тяготения определяется Вторым законом Русской физики: усилие тяготения равно произведению уклона эфирного давления на объём внутриатомной пустоты. 30. Зоны тяготения в Космосе Крупные эфировороты могут увлекать более мелкие и превращать их в свои периферийные. Пример. Самым крупным эфироворотом в ближайшем космосе у нас является Солнечный. На его периферии вращается Земной эфироворот, а на периферии Земного Лунный. Космический объект (в частности космический корабль) испытывает тяготение в сторону центра только того эфироворота, в пределах которого он находится. Границы планетных эфироворотов в Космосе очень чёткие, и, переходя через них, космический корабль переходит из одной зоны тяготения в другую. Он может испытывать тяготение в сторону только центра Земли, или только Луны, или только любой другой планеты, а если выходит за пределы их эфироворотов, то испытывает тяготение только в сторону Солнца.
Наверх
[Цитировать][Ответить][Новое сообщение]
В. М. Антонов
Re[22]: Космология 18.01.2019 6:56

Галактики Галактики рождаются в результате столкновения нашей Метагалактики с чужими скоплениями эфира. 31. Форма и размеры Метагалактики Будем считать, что наша Галактика (Млечный Путь) находится где-то у края Метагалактики. Получив толчок во время своего образования, она успела пройти огромное расстояние. Это, действительно, - огромное расстояние, если даже от удалённых звёзд свет идёт до нас сотни миллиардов лет (а скорость света, как известно, равна 300-ам тысячам километров в секунду). И на этих звёздах Метагалактика ещё не кончается. Далее идёт разреженный эфир. Так что до края нашего эфира очень и очень далеко. Что касается формы Метагалактики, то, скорее всего, она сферическая; точнее близка к сферической. И всё потому, что эфирное давление распирает её во все стороны одинаково. Напомним: в наших краях давление эфира составляет порядка 1024 паскалей, а на окраинах Метагалактики, разумеется,- нулевое. 32. Формы и размеры чужих скоплений эфира Формы у всех чужих скоплений эфира, с которыми сталкивается наша Метагалактика, наверное, близки к сферическим (по тем же самым соображениям). А вот размеры этих скоплений могут быть разными. Это следует из того, что всякое ограничение на этот счёт (дескать, они только такие и не иначе) пришлось бы объяснять и аргументировать. 33. Виды столкновений Метагалактики Если и в этом случае не вводить никаких искусственных ограничений, то столкновения могут быть самыми разными и на разных скоростях. Во-первых, мало вероятно, чтобы приближающееся к Метагалактике чужое скопление эфира не вращалось с той или иной скоростью. Во-вторых, мало вероятно и то, что удар придётся строго по направлению к центру Метагалактики; косые удары норма соударения. И даже по скорости соударения нет смысла вводить особые условия. В данном случае уместно такое сравнение: мягкое давление двух пружин друг на друга кончается тем, что пружины садятся виток на виток, и жёсткое их столкновение неизбежно. Подобное происходит, надо полагать, и при сближении эфирных скоплений.
Наверх
[Цитировать][Ответить][Новое сообщение]
[Новое сообщение] Форумы >> Обсуждение публикаций Астронета
Список  /  Дерево
Пред. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | След.

Астронет | Научная сеть | ГАИШ МГУ | Поиск по МГУ | О проекте | Авторам

Комментарии, вопросы? Пишите: info@astronet.ru или сюда

Rambler's Top100 Яндекс цитирования