Rambler's Top100Astronet    
  по текстам   по ключевым словам   в глоссарии   по сайтам   перевод   по каталогу
 

Космические лучи
12.12.2005 21:11 |


1. Введение

Конец XIX – начало XX века ознаменовались новыми открытиями в области микромира. После открытия рентгеновских лучей и радиоактивности были обнаружены заряженные частицы, приходящие на Землю из космического пространства. Эти частицы были названы космическими лучами (КЛ).

Датой открытия космических лучей принято считать 1912 год, когда австрийский физик В.Ф. Гесс с помощью усовершенствованного электроскопа измерил скорость ионизации воздуха в зависимости от высоты. Оказалось, что с ростом высоты величина ионизации сначала уменьшается, а затем на высотах свыше 2000 м начинает резко возрастать. Ионизующее излучение, слабо поглощаемое воздухом и увеличивающееся с увеличением высоты, образуется КЛ, падающими на границу атмосферы из космического пространства.

КЛ представляют собой ядра различных элементов, следовательно, являются заряженными частицами. Наиболее многочисленны в КЛ ядра атомов водорода и гелия ( ~85 и ~10 % соответственно). Доля ядер всех остальных элементов таблицы Менделеева не превышает ~5 %. Небольшую часть КЛ составляют электроны и позитроны (менее 1 %).

В процессах, происходящих во Вселенной, КЛ играют важную роль. Плотность энергии КЛ в нашей Галактике составляет ~1 эВ/см3, что сравнимо с плотностями энергий межзвездного газа и галактического магнитного поля.

По содержанию в КЛ элементов лития, бериллия и бора, которые образуются в результате ядерных взаимодействий космических частиц с атомами межзвездной среды, можно определить то количество вещества X, через которое прошли КЛ, блуждая в межзвездной среде. Величина X примерно равна 5-10 г/см2. Время блуждания КЛ в межзвездной среде (или время их жизни) и величина X связаны соотношением X≈ρct, где c – скорость частиц (обычно полагают, что величина c равна скорости света), ρ – средняя плотность межзвездной среды, составляющая ~10-24 г/см3, t – время блуждания КЛ в этой среде. Отсюда время жизни КЛ ~3·108 лет. Оно определяется либо выходом КЛ из Галактики и гало, либо их поглощением за счет неупругих взаимодействий с веществом межзвездной среды.

Основным источником КЛ внутри Галактики являются взрывы сверхновых звезд. КЛ ускоряются на ударных волнах, образующихся в этих взрывах. Максимальная энергия, которую могут приобрести частицы в таких процессах, составляет Emax~1016 эВ. Кроме того, часть КЛ может ускориться до таких же энергий на ударных волнах, распространяющихся в межзвездной среде Галактики. КЛ еще больших энергий образуются в Метагалактике. Одним из их источников могут быть ядра активных галактик.

На рис. 1 показаны энергетические спектры J(E) для протонов Н, ядер гелия Не, углерода С и железа Fe, которые наблюдаются в космическом пространстве. Величина J(E) представляет собой количество частиц, имеющих энергию в диапазоне от E до EE и проходящих через единичную поверхность в единицу времени в единице телесного угла в направлении, перпендикулярном поверхности. Видно, что основную долю в КЛ составляют протоны, затем следуют ядра гелия. Доля остальных ядер невелика.

\includegraphics{pic1.eps}

Рис. 1. Дифференциальные спектры галактических КЛ: протонов Н, ядер гелия Не, углерода С и железа Fe

По своему происхождению КЛ можно разделить на несколько групп.

1) КЛ галактического происхождения (ГКЛ). Источником ГКЛ является наша Галактика, в которой происходит ускорение частиц до энергий ~1018 эВ. Спектры КЛ, изображенные на рис. 1, относятся к ГКЛ.

2) КЛ метагалактического происхождения, они имеют самые большие энергии, E>1018 эВ, образуются в других галактиках.

3) Солнечные КЛ (СКЛ), генерируемые на Солнце во время солнечных вспышек.

4) Аномальные КЛ (АКЛ), образующиеся в Солнечной системе на периферии гелиомагнитосферы.

КЛ самых малых и самых больших энергий различаются в 1015 раз. С помощью только одного типа аппаратуры невозможно исследовать такой огромный диапазон энергий, поэтому для изучения КЛ используются разные методы и приборы: в космическом пространстве – с помощью аппаратуры, установленной на спутниках и космических ракетах, в атмосфере Земли – с помощью малых шаров-зондов и больших высотных аэростатов, на ее поверхности – с помощью наземных установок (некоторые из них достигают размеров в сотни квадратных километров), расположенных либо высоко в горах, либо глубоко под землей, либо на больших глубинах в океане, куда проникают частицы высоких энергий.

КЛ при своем распространении в межзвездной среде взаимодействуют с межзвездным газом, а при попадании на Землю – с атомами атмосферы. Результатом таких взаимодействий являются вторичные частицы – протоны и нейтроны, мезоны, электроны, γ-кванты, нейтрино.

Основными типами детекторов, которые используются при изучении КЛ, являются фотоэмульсии и рентгеновские пленки, ионизационные камеры, газоразрядные счетчики, счетчики нейтронов, черенковские и сцинтилляционные счетчики, твердотельные полупроводниковые детекторы, искровые и дрейфовые камеры.

2. Галактические космические лучи

КЛ используются для изучения ядерных взаимодействий частиц. В области высоких энергий, которые пока недостижимы на современных ускорителях, космические частицы являются единственным средством изучения ядерных процессов. Для изучения взаимодействий КЛ высоких энергий ( E≈1015 эВ) с веществом используются ионизационные калориметры. Эти приборы, впервые предложенные Н.Л. Григоровым с сотрудниками, представляют собой несколько рядов детекторов – ионизационных камер или сцинтилляционных счетчиков, между которыми расположен поглотитель из свинца или железа. На верхней части калориметра помещается мишень из легкого вещества – углерода или алюминия. Частица, падающая на поверхность ионизационного калориметра, взаимодействует с ядром мишени, образуя вторичные частицы. Их число сначала возрастает, достигая некоторого максимального значения, и затем постепенно убывает по мере продвижения в тело калориметра. Детекторы измеряют ионизацию под каждым слоем поглотителя. По кривой зависимости степени ионизации от номера слоя можно определить энергию попавшей в калориметр частицы. Этими приборами впервые в мире был измерен спектр первичных КЛ в диапазоне энергий от ~1011 до ~1014 эВ. КЛ в диапазоне энергий 1011<E<3·1015 эВ имеют галактическое происхождение, их энергетический спектр можно описать степенным законом J(E)=J0 E-2,75.

Для изучения характеристик ядерных взаимодействий КЛ очень больших энергий необходимы установки с большой площадью регистрации, так как поток высокоэнергичных частиц крайне мал. Их называют рентгеновскими камерами. Это приборы с площадью поверхности до нескольких сотен квадратных метров, состоящие из рядов рентгеновских пленок, перемежающихся слоями свинца. В результате взаимодействия КЛ с частицами воздуха образуются мезоны, часть из которых затем размножается в свинце, оставляя пятна на рентгеновской пленке. По числу и величине этих пятен, плотности их потемнения и по расположению в разных слоях определяется энергия взаимодействующей частицы и направление ее прихода.

\includegraphics{pic2.eps}

Рис. 2. Схема ливня частиц, падающего на установку под углом θ к вертикали

Для изучения КЛ с энергиями выше 1014 эВ используется свойство частиц высоких энергий создавать очень много вторичных частиц, в основном протонов и пионов, в результате взаимодействия первичной частицы с ядрами атомов в атмосфере. Обладающие достаточно высокой энергией протоны и пионы в свою очередь являются ядерно-активными частицами и вновь взаимодействуют с ядрами атомов воздуха. Как заряженные ( π±), так и нейтральные ( π0) пионы – это нестабильные частицы со временем жизни t≈10-16 с для покоящегося π0 и t≈2,6·10-8 с для покоящихся π±. Пионы сравнительно малых энергий не успевают вступить во взаимодействие с ядром атома воздуха и могут распасться на γ-кванты, положительные и отрицательные мюоны ( μ±), нейтрино ( ν) и антинейтрино (ν-): π0→ γ + γ ; π±→ μ± + ν +ν-. Мюоны также являются нестабильными частицами со временем жизни для покоящегося мюона t≈2,2·10-6 с и распадаются по схеме μ±→ e± + ν + ν-. Гамма-кванты и электроны (позитроны) за счет электромагнитного взаимодействия с атомами воздуха дают новые гамма-кванты и электроны. Таким образом в атмосфере образуется каскад частиц, состоящий из протонов, нейтронов и пионов (ядерный каскад), электронов (позитронов) и γ-квантов (электромагнитный каскад). Впервые ливни наблюдал Д.В. Скобельцын в конце 20-х годов.

Каскады в атмосфере, вызываемые частицами больших энергий и занимающие обширные площади, получили название широких атмосферных ливней. Они были открыты французским физиком П. Оже и его сотрудниками в 1938 году. Высокоэнергичная космическая частица образует ливень с огромным числом вторичных частиц, так, например, частица с E=1016 эВ в результате взаимодействий с атомами воздуха вблизи поверхности Земли порождает примерно 10 млн вторичных частиц, распределенных на большой площади.

Хотя поток высокоэнергичных КЛ, падающих на границу земной атмосферы, крайне мал, широкие атмосферные ливни занимают значительные площади и могут быть зарегистрированы с высокой эффективностью. Для этой цели на поверхности земли размещаются детекторы частиц на площади в десятки квадратных километров, причем регистрируются только те события, в которых срабатывает сразу несколько детекторов. Широкий атмосферный ливень можно упрощенно представить в виде диска частиц, движущегося в атмосфере. На рис. 2 показано, как такой диск частиц широкого атмосферного ливня падает на детекторы регистрирующей установки. В зависимости от энергии космической частицы размер диска (поперечный размер ливня) может составлять от нескольких десятков метров до километра, а его толщина (продольный размер или фронт ливня) – десятки сантиметров. Частицы в ливне движутся со скоростью, близкой к скорости света. Число частиц в ливне существенно уменьшается при переходе от центра диска к его периферии. Поперечный размер широкого атмосферного ливня и число частиц в нем увеличивается с ростом энергии первичной частицы, которая образует этот ливень. Самые большие наблюдаемые на сегодняшний день ливни от первичных частиц с E≈1020 эВ содержат несколько миллиардов вторичных частиц. Измеряя многими детекторами пространственное распределение частиц в ливне, можно найти их полное число и определить энергию первичной частицы, которая данный ливень образовала. Поток частиц с энергиями E≈1020 эВ очень мал. Например, на 1 м2 на границе атмосферы за 1 млн лет падает лишь одна частица с E≈1019 эВ. Для регистрации столь малых потоков необходимо иметь большие площади, покрытые детекторами, чтобы зарегистрировать достаточное количество событий за разумное время. На гигантских установках по регистрации широких атмосферных ливней было "поймано" несколько частиц, имеющих энергии свыше 1020 эВ (максимальная зарегистрированная в настоящее время энергия частицы равна ~3·1020 эВ).

Существуют ли КЛ более высоких энергий? В 1966 году Г.Т. Зацепин, В.А. Кузьмин и американский физик К. Грейзен высказали предположение, что спектр КЛ при энергиях E>3·1019 эВ должен обрезаться из-за взаимодействия высокоэнергичных частиц с реликтовым излучением Вселенной. Регистрация нескольких событий с энергией E≈1020 эВ может быть объяснена, если предположить, что источники этих частиц удалены от нас на расстояния не более 50 Мпк. В этом случае взаимодействий КЛ с фотонами реликтового излучения практически не будет из-за малого количества фотонов на пути частицы от источника к наблюдателю.

В области высоких энергий КЛ наблюдается несколько особенностей.

1) Спектр КЛ испытывает излом при E≈1015 эВ. Показатель наклона спектра КЛ до излома γ≈2,75, для частиц больших энергий спектр становится круче, γ≈3,0. Эта важная особенность в спектре КЛ была открыта С.Н. Верновым и Г.Б. Христиансеном при изучении спектра широких атмосферных линий. Наблюдаемый излом в спектре при таких больших энергиях может быть вызван более быстрым выходом КЛ из нашей Галактики по сравнению с частицами меньших энергий или может быть обусловлен изменением природы их источников. Возможно также изменение химического состава КЛ в области излома.

2) При энергии частиц E≈1018 эВ спектр КЛ становится еще круче, γ≈3,3. Это вызвано, по-видимому, тем фактом, что в данном диапазоне энергий КЛ преимущественно метагалактического происхождения, их спектр имеет другой наклон.

3) Спектр частиц с E>1019 эВ становится более пологим, γ≤3,3. Этот эффект вызван взаимодействием КЛ, имеющих энергии E>1019 эВ, с реликтовыми фотонами, в процессе которого КЛ теряют часть своей энергии и переходят в область меньших энергий, что делает спектр частиц более пологим.

4) Спектр КЛ с энергиями свыше 1020 эВ может быть получен лишь после длительных наблюдений, когда будет зарегистрировано достаточное количество событий с такими экстремальными энергиями. Для того чтобы существенно увеличить число случаев регистрации широких атмосферных ливней от частиц с энергиями E>1019 эВ, в ближайшие годы планируется построить три гигантские установки с детекторами, размещенными на площади более 1000 км2. С их помощью ученые надеются получить ответ на вопрос о спектре КЛ в области сверхвысоких энергий и о максимально возможной энергии космических частиц.

КЛ сверхвысоких энергий будут удерживаться в Галактике ее магнитными полями, если радиус кривизны траектории частицы много меньше размеров Галактики. Используя соотношение между энергией частицы (E, эВ), ее радиусом кривизны ( r≈1022 см – размер Галактики) и напряженностью магнитного поля ( H≈10-6 Э), E= 300Hr, получим максимальную энергию КЛ, которые могут удерживаться в нашей Галактике: Emax≈1018 эВ. Это говорит о том, что КЛ более высоких энергий могут иметь метагалактическое происхождение.

3. Гамма-астрономия высоких и сверхвысоких энергий

КЛ образуются не только при взрывах сверхновых звезд. Источниками КЛ могут быть и другие космические объекты (пульсары, квазары и пр.). Можно с большой уверенностью полагать, что источники КЛ будут также и источниками высокоэнергичных γ-квантов. Гамма-кванты, в отличие от заряженных частиц, не испытывают воздействия космических магнитных полей и распространяются прямолинейно от источника к наблюдателю. Обнаружение таких светящихся в гамма-излучении космических объектов могло бы стать неопровержимым доказательством существования конкретных источников КЛ.

Идея экспериментов, начатых в начале 60-х годов советским ученым А.Е. Чудаковым, по поиску звездных источников высокоэнергичных γ-квантов заключается в следующем. Гамма-квант, падающий на границу земной атмосферы, порождает ливень частиц, состоящий из электронов и вторичных γ-квантов. Любая заряженная частица, движущаяся со скоростью, превышающей скорость света в среде, создает в ней, в данном случае в земной атмосфере, световое излучение, которое называется излучением Черенкова-Вавилова. Идея экспериментов состоит в том, чтобы собрать черенковский свет от ливня вторичных заряженных частиц, образованного γ-квантом высокой энергии, падающим на поверхность атмосферы из данного направления. На рис. 3 схематически изображен атмосферный ливень, образованный таким гамма-квантом. В установках, регистрирующих черенковский свет, используется ряд сферических зеркал. В фокусе каждого расположены несколько десятков фотоэлектронных умножителей – приборов, очень чувствительных к изменению светового потока, падающего на зеркало из данного направления. Наблюдения возможны лишь в ясные и безлунные ночи.

\includegraphics{pic3.eps}

Рис. 3. Схема атмосферного ливня, образованного высокоэнергичным гамма-квантом. Гамма-квант взаимодействует с частицами в атмосфере и создает электромагнитный каскад (электроны и гамма-кванты). Заряженные частицы испускают черенковское излучение, которое регистрируется наземными оптическими детекторами

Потребовались большие усилия ученых многих стран мира по совершенствованию аппаратуры, методов обработки информации, прежде чем в середине 80-х годов был обнаружен поток высокоэнергичных γ-квантов от двух объектов: Крабовидной туманности и ядра активной галактики Маркарян-421. Обнаруженные потоки γ-квантов были ничтожно малыми. Например, поток гамма-квантов с Eγ>1012 эВ от Крабовидной туманности составил всего Nγ≈10-12 квантов·см-2·с-1. В начале 1997 года несколькими наземными γ-установками был открыт самый мощный источник высокоэнергичного γ-излучения – галактика Маркарян-501. Поток высокоэнергичных γ-квантов от этого источника меняется со временем, его максимальное значение в несколько раз превосходит суммарную величину потока γ-квантов от ранее известных источников.

4. Модуляционные эффекты в космических лучах

Интерес к исследованию КЛ с энергиями E<1012 эВ связан с изменением потоков частиц во времени и пространстве и их зависимостью от уровня солнечной активности. КЛ, приходящие в околосо