Rambler's Top100Astronet    
  по текстам   по ключевым словам   в глоссарии   по сайтам   перевод   по каталогу
 

Проблемы современной астрофизики
12.12.2005 20:11 |


1. Введение

Предметом астрофизики является исследование физических процессов во Вселенной. Основным источником информации об удаленных космических объектах, за редким исключением Луны, планет и некоторых малых тел Солнечной системы, доступных прямым исследованиям средствами современной космонавтики, служит приходящее от них электромагнитное излучение. Поэтому задачей астрофизики является построение моделей, которые объяснили бы появление излучения различных космических объектов с наблюдаемыми характеристиками: интенсивностью, спектром, поляризацией, временным профилем и т. д. При решении этой задачи ученые-астрофизики исходят из известной картины физических процессов и законов в условиях, зависящих от температуры и плотности вещества, наличия магнитного поля и его величины, от возможного влияния сил тяготения.

Современная астрофизика сформировалась после второй мировой войны. С точки зрения наблюдений ее основная черта – расширение спектрального диапазона исследуемого излучения. Довоенная астрофизика использовала лишь результаты астрономических наблюдений в видимом свете – сравнительно узкой полосе спектра электромагнитных волн. Ясно, что при этом в центре внимания оказывались прежде всего те объекты во Вселенной, которые излучают в основном видимый свет – звезды, туманности, галактики. Теория их излучения была построена на основании знаний, полученных в земных лабораториях. В настоящее время в астрономии используются практически все диапазоны – от радиоволн до гамма-излучения. Превращение астрономии во всеволновую обогатило знания об известных объектах и привело к открытию новых объектов, позволило зарегистрировать излучение из таких областей, где материя (то есть вещество и излучение) находится в так называемых экстремальных (предельных) условиях, таких, которые практически невозможно реализовать в лабораториях на Земле. Это высокие плотности вещества, существующие на первых этапах развития Вселенной, в недрах нейтронных звезд и в ближайших окрестностях черных дыр; сильные магнитные поля белых карликов и нейтронных звезд. В этих условиях материя нередко приобретает новые физические свойства. Именно в тех областях, где реализуются те или иные экстремальные условия, и сосредоточены основные проблемы современной астрофизики.

При нынешнем уровне развития земной техники макроскопические свойства материи в экстремальных условиях можно исследовать только наблюдая астрофизические объекты, в которых эти условия реализуются. Поэтому современная астрофизика – это передний край науки, она изучает фундаментальные явления и процессы, недоступные пока земной физике. Например, даже рекордные для современной науки и техники магнитные поля, полученные в лабораториях, в десятки раз меньше, чем поля магнитных белых карликов (107-109 Гс), и в сотни тысяч раз меньше магнитных полей нейтронных звезд (до 1012 Гс и более). Пример необычных эффектов в экстремальных астрофизических условиях – намагничивание вакуума сверхсильным магнитным полем. В полях с близкими к критическому значению Bкрит = 4·1013 Гс вакуум становится похожим на анизотропный кристалл. Показатель преломления такой среды зависит не только от направления распространения излучения, но и от его поляризации (эффект двойного лучепреломления).

Вот лишь три примера объектов, где реализуются экстремальные астрофизические условия: Вселенная на начальных стадиях ее развития, космические гамма-всплески, а также недавно открытые "микроквазары" в нашей Галактике.

2. Космологическая проблема

Основные проблемы в космологии состоят в выборе модели развития Вселенной (открытой с неограниченным космологическим расширением или закрытой, в которой первоначальное расширение из сверхплотного состояния сменится последующим сжатием) и в выяснении сценария первоначального расширения Вселенной после момента Большого Взрыва (подробнее о стадиях развития Вселенной смотри статьи А.Н. Васильева "Эволюция Вселенной" и М.В. Сажина "Космология ранней Вселенной" в этом томе).

Современный темп расширения Вселенной определяется так называемой постоянной Хаббла H=50 -100(км/c)/Мпк. Вследствие космологического расширения любые два объекта, находящиеся на расстоянии r , удаляются друг от друга со скоростью v=Hr (эта формула справедлива лишь для нерелятивистских скоростей vc, где c – скорость света). Динамика расширения объектов, удаленных от нас на некоторое расстояние r, определяется гравитационным воздействием со стороны вещества, находящегося внутри сферы радиуса r. Поскольку, согласно данным астрономических наблюдений, распределение вещества на больших масштабах весьма однородно, то можно считать его плотность ρ постоянной. Соответствующее гравитационное ускорение

gr =4π/3 r 2 G/ρ , (1)

а вторая космическая скорость
vr = [8πρGr 2/3]1/2 , (2)

где Gгравитационная постоянная. Модель открытой Вселенной реализуется, если скорость космологического расширения превышает vr . В противном случае ( v=Hr < vr ) Вселенная является закрытой.

Из приведенных условий ясно, что сценарий развития Вселенной зависит от средней плотности вещества в современную эпоху. Открытая модель соответствует ρ < ρкрит = 3H 2 / (8 π G) , обратное неравенство справедливо для закрытой модели. По современным данным критическая плотность вещества ρкрит = 5 · 10-30 г/см3 . Примерно такое же значение дают оценки плотности вещества во Вселенной с учетом скрытой массы. Таким образом, при достигнутой точности определения ρ и ρкрит нельзя сделать выбор между двумя моделями. Однако величина средней плотности вещества во Вселенной может не учитывать вклад какой-либо компоненты. Например, если подтвердятся эксперименты по измерению массы покоя нейтрино mν, то можно будет однозначно сделать выбор в пользу закрытой модели, тaк как обилие таких нейтрино существенно увеличит среднюю плотность вещества во Вселенной.

Независимо от схемы эволюции считается, что справедлива так называемая модель горячей Вселенной, когда температура T и плотность вещества на начальных стадиях расширения были велики. Первичное вещество было полностью ионизовано, и длина свободного пробега излучения в это время была мала по сравнению с характерным размером Вселенной. Вследствие этого вещество и излучение находились в состоянии термодинамического равновесия, при котором спектр излучения описывается формулой Планка. По мере расширения температура вещества и излучения уменьшалась, и примерно через миллион лет после Большого Взрыва при T≈ 5·103 К началась рекомбинация ионов и электронов с образованием нейтральных атомов. Так как нейтральное вещество взаимодействует с излучением гораздо слабее, чем полностью ионизованное, длина пробега квантов этого реликтового (остаточного) излучения превысила размеры Вселенной. Начиная с эпохи рекомбинации реликтовое излучение и вещество эволюционируют независимо. Эффект Доплера в расширяющейся Вселенной приводит к уменьшению наблюдаемой частоты реликтового излучения и соответственно температуры, определяющей форму его спектра. В настоящее время температура реликтового излучения составляет 2,7 К и наблюдается оно в виде радиоволн сантиметрового и миллиметрового диапазонов. Реликтовое излучение – единственный прямой источник информации о структуре Вселенной в эпоху рекомбинации, 10-12 млрд лет назад. Степень его изотропии однозначно связана со степенью однородности вещества в эпоху рекомбинации. Наблюдаемую в современную эпоху чрезвычайно высокую степень изотропии реликтового излучения можно объяснить лишь в рамках инфляционной (раздувающейся) модели ранней Вселенной, когда считается, что первоначальное расширение происходило по экспоненциальному закону r∝eH t . Во время инфляционной стадии была подавлена гравитационная неустойчивость, приводящая к формированию неоднородностей, а также сглаживались первичные неоднородности, если таковые существовали.

3. Космические гамма-всплески

Космические гамма-всплески относятся к наиболее загадочным астрономическим явлениям, открытым в последние 25 лет, и до сих пор вызывают оживленный интерес ученых. Гамма-всплески были открыты случайно американскими спутниками серии VЕLA, предназначенными для обнаружения наземных ядерных взрывов. К настоящему времени различными космическими аппаратами зарегистрировано около 1500 всплесков. Они представляют собой импульсы гамма-излучения (энергии квантов от нескольких десятков килоэлектронвольт до нескольких мегаэлектронвольт) длительностью от десятков миллисекунд до нескольких минут. Распределение гамма-всплесков по длительности имеет четкий максимум на 10-20 с и менее выраженный на 0,2 с.

Временные истории всплесков отличаются чрезвычайным разнообразием (рис. 1). Весьма упрощенно всплески можно разделить на две большие группы: всплески относительно простой формы с плавным профилем (иногда состоящие всего из одного простого импульса) и события со сложной временной структурой. Иногда отдельные пики в пределах всплеска следуют почти периодически, хотя строго регулярная периодичность, за единичными исключениями, в профилях всплесков отсутствует. Интенсивность излучения во время гамма-всплеска может сильно и быстро меняться. Минимальное время переменности излучения всплесков составляет Δt ≤ 0,2 мс, что соответствует максимальному размеру излучающего объекта Δr ≤ c Δt ≈ 60 км. Эта оценка показывает, что источниками всплесков могут быть лишь компактные объекты (например, черные дыры или нейтронные звезды). Наблюдаемое разнообразие длительностей и профилей всплесков указывает на разнообразие природы их источников и механизмов генерации.

\includegraphics{pic1.eps}

Рис. 1. Временные профили гамма-всплесков: зависимость средней частоты регистрации фотонов N от времени t-t0 после начала всплеска

Гамма-всплески наблюдаются довольно часто, в среднем один раз в 20-30 часов, однако заранее невозможно узнать, когда и в какой точке небосвода всплеск произойдет в следующий раз. За исключением трех случаев, пока не удалось увидеть повторные всплески из одного и того же места на небесной сфере. Поэтому исследовать гамма-всплески телескопами с узким полем зрения нерационально: слишком мала вероятность, что следующий всплеск произойдет именно в том небольшом участке небесной сферы, на который в данный момент времени направлен телескоп. Для регистрации гамма-всплесков обычно используются детекторы с полусферическим обзором без каких-либо фокусирующих или направляющих элементов; их чувствительность пропорциональна sd sin θ , где sd – площадь входного окна детектора, а θ – угол между его плоскостью и направлением на источник. Если разместить на космическом аппарате несколько таких приборов, ориентированных в разных направлениях, то можно оценить местоположение источника всплеска на небесной сфере, сравнивая уровень сигнала в тех детекторах, которые этот всплеск фиксируют. При этом точность определения угловых координат ограничивается статистическими флуктуациями потока гамма-квантов и обычно составляет 1º-5º. Такой метод был использован в конце 70-х – начале 80-х годов в экспериментах КОНУС на советских межпланетных станциях ВЕНЕРА-11, 12, 13 и 14, где всплесковый комплекс состоял из 6 детекторов, расположенных по осям прямоугольной системы координат. В настоящее время подобная схема реализована и в эксперименте BATSE на американской орбитальной гамма-обсерватории GRO, где наблюдение всплесков ведется восемью детекторами, плоскости которых ориентированы параллельно граням правильного восьмигранника. В последнем случае каждая точка неба осматривается четырьмя детекторами.

Более точное определение угловых координат источников всплесков может дать их одновременное наблюдение несколькими (не менее чем тремя) космическими аппаратами, находящимися на большом (например, межпланетном) расстоянии друг от друга. Если известны моменты начала всплеска на каждом из космических аппаратов, то по разности этих времен можно определить направление на источник. Точность данного метода триангуляции повышается при увеличении расстояния между космическими аппаратами и их числа, а также при уменьшении времени нарастания излучения всплеска (всплеск с крутым передним фронтом можно локализовать точнее). В наиболее благоприятных случаях метод триангуляции позволяет определить координаты всплеска с точностью до 10″-20″.

Дальнейшую информацию о расположении источников всплесков можно получить двумя способами. Можно попытаться обнаружить источники всплесков в "спокойном" состоянии, то есть зарегистрировать в каком-либо диапазоне длин волн излучения от того объекта, который время от времени (или раз в жизни) генерирует вспышку гамма-излучения. Однако многочисленные попытки идентифицировать гамма-всплески со стационарно излучающими объектами в радио-, инфракрасном, оптическом, рентгеновском и гамма-диапазоне не увенчались успехом. Другой способ – определить расстояние до источников, сравнивая истинную и видимую светимость всплесков, – также использовать невозможно, поскольку неизвестна истинная светимость. В звездной астрономии этот замкнутый круг обычно преодолевают, предполагая, что звезды с одинаковыми спектрами должны иметь близкую по величине светимость. Косвенные методы определения пространственного распределения всплесков также основаны на этом предположении. К анализу спектров гамма-всплесков мы вернемся несколько позже. Здесь лишь заметим, что в отличие от оптических звездных спектров, богатых многочисленными деталями (линии и полосы в поглощении и излучении, скачки и т. д.), гамма-спектры всплесков мало информативны. Поэтому по сравнению со звездной астрономией предположение об одинаковой светимости гамма-всплесков гораздо менее обоснованно и используется за неимением лучшего.

В предположении, что светимость всех всплесков примерно одинакова, их пространственное распределение можно исследовать, пользуясь так называемым распределением N(>S) . Для безграничного однородного распределения источников с концентрацией n число всплесков с видимой светимостью больше некоторого значения S :

N(>S)=4πn/3 [S0/S] -3/2S -3/2 , (3)

где S0 – истинная, а S – видимая светимость гамма-всплеска.

Если однородное распределение ограничено расстоянием Dmax, то зависимость N(>S) отклоняется от закона трех вторых при S < S*=S0 / Dmax. Если же источники всплесков расположены с постоянной концентрацией в безграничном диске толщины H, то

N(>S)=πn HS* S -1S -1 .
Как и в предыдущем случае, для диска конечного радиуса Dmax распределение N(>S) отклоняется от S -1 при S < S* . Важно получить из наблюдений зависимость N(>S) в области малых S. Возможности детектора ограничивают интервал наблюдений: детектор с чувствительностью Smin позволяет измерить распределение N(>S) лишь при S > Smin. Описанный метод обладает также тем недостатком, что не позволяет напрямую сравнить данные, полученные разными детекторами, поскольку каждый прибор имеет свою чувствительность, а провести взаимную калибровку различных детекторов, как правило, невозможно.

Перечисленные трудности снимаются при использовании другого метода, называемого "тест V / Vmax". В этом случае измеряется распределение всплесков по параметру V / Vmax, где

V = 4πD 3/3 = 4π/3 [S0/S] 3/2 ,
Vmax = 4πDmax3/3 = [S0/Smin] 3/2 ,
(4)

V – объем сферы с радиусом, равным расстоянию до источника, Vmax – объем пространства, в пределах которого детектор с чувствительностью Smin может регистрировать источники всплесков. Для однородного пространственного распределения всплески распределены равномерно в интервале 0 ≤ V / Vmax ≤ 1 , а среднее значение ‹V / Vmax› = 1/2.