Rambler's Top100Astronet    
  по текстам   по ключевым словам   в глоссарии   по сайтам   перевод   по каталогу
 

(c) John Whatmough ("Extrasolar Visions")

Судьба планетных систем

Г. М. Рудницкий

Государственный астрономический институт им. П.К. Штернберга

 

 

В средствах массовой информации любимые страшилки для широкой публики – вселенские катастрофы: обвал земного климата, падение астероида, поглощение Солнечной системы черной дырой, грядущий взрыв Солнца. Еще опасности из космоса, которыми порадовал журнал "Русская Америка": близкая вспышка сверхновой; возможно, таковой станет красный гигант Мира, который уже начал "подозрительно пульсировать". Этот гигант в несколько сотен раз больше Солнца, а чем больше звезда, "тем больше вероятность взрыва". Оставляя на "совести" авторов цитированных публикаций всякую ахинею, которая к науке отношения не имеет, попытаемся извлечь рациональное зерно: что же ожидает Солнце и нашу планетную систему в будущем – и не только нашу. В последние годы более чем у сотни близких звезд обнаружены планетные системы. Оказывается, и планеты не вечны. Особенно печальная судьба ждет планеты, близкие к своим звездам. Какая именно – об этом и говорится в данной статье.

Место красных гигантов в эволюции звезд

 

Так продолжал я передвигаться во времени огромными скачками, каждый в тысячу лет и больше, увлеченный тайнами судеб Земли и в состоянии какого-то гипноза наблюдая, как Солнце на западе становится все огромней и тусклей, как угасает жизнь. Наконец, больше чем через тридцать миллионов лет огромный красный купол Солнца заслонил собой десятую часть потемневшего неба.      

Герберт Уэллс. "Машина времени"


Солнце – рядовая звезда спектрального класса G2. Оно занимает место примерно в середине диаграммы Герцшпрунга–Рессела (Г–Р). По горизонтальной оси диаграммы отложен спектральный класс звезды, по вертикальной – светимость. Спектральный класс звезды определяется ее температурой. Наиболее горячие звезды расположены в левой части диаграммы Г–Р, наиболее холодные – в правой. Однако точки, изображающие звезды, не заполняют диаграмму равномерно. По диагонали диаграммы проходит полоса, где плотность точек наибольшая. Это так называемая главная последовательность. Звезды на главной последовательности проводят большую часть своей жизни, но рано или поздно покидают ее, что бы перейти в другое состояние. В течение эволюции звезды меняются и ее температура, и ее светимость. Точка, соответствующая звезде, перемещается по диаграмме. Кривая, по которой перемещается точка – так называемый эволюционный трек звезды. Конечно, диаграмма Г–Р – это как бы застывший мгновенный снимок. Но теория звездной эволюции позволяет для звезды любой массы проследить ее эволюционный трек на диаграмме Г–Р. Области или полосы на диаграмме, наиболее заполненные звездами, могут рассказать о том, куда направляются звезды в течение своего жизненного пути – в том числе и после пребывания на главной последовательности диаграммы Г–Р.

Наше Солнце – одна из звезд главной последовательности – находится примерно в середине длительного стабильного этапа своей жизни. Возраст Солнца около 5 миллиардов лет, и за все время его светимость менялась не более чем на 30% без каких-либо резких скачков. Это позволило нашей планетной системе существовать в почти неизменных условиях, дало жизни возможность возникнуть и развиться, по крайней мере, на одной планете Солнечной системы – на Земле. Однако в свое время – через примерно 5.7 млрд. лет – спокойная жизнь для Солнечной системы закончится. Согласно теории звездной эволюции, все звезды, имеющие массу от одной до нескольких масс Солнца (Mo), на заключительном этапе вступают в фазу красного гиганта. Основная причина перехода к красному гиганту – перестройка процессов ядерного горения в недрах звезды. На главной последовательности основной источник энергии в звездах – превращение водорода в гелий.

Внутреннее строение красного гиганта
Когда в ядре звезды исчерпано водородное горючее, начинается сжатие ядра. Температура повышается до ~108 K, и становятся возможными ядерные реакции, приводящие к образованию из трех ядер гелия одного ядра углерода-12: 3 4He $\to$ 12C. Реакция углерода с гелием приводит к образованию кислорода: 12C + 4He $\to$ 16O. Затем и гелий в ядре заканчивается. Звездное ядро к этому времени состоит в основном из углерода с примесью изотопов кислорода и более тяжелых элементов. В двух слоях, окружающих ядро, ядерные реакции продолжаются: в прилегающей к ядру оболочке продолжает гореть гелий, в более внешней – водород. Радиус звезды увеличивается многократно, от величин порядка одного радиуса Солнца (Ro) до сотен Ro. У звезды развивается мощная конвективная зона, которая занимает до 99.9% радиуса звезды (R*). Температура поверхности падает до 2000–3000 K, но светимость возрастает за счет увеличения размеров звезды и достигает нескольких тысяч светимостей Солнца. В это время звезда быстро (звезды солнечной массы – за несколько миллионов лет) перемещается на диаграмме Г–Р с главной последовательности сначала на горизонтальную ветвь, где ее светимость меняется мало, а температура падает. Затем звезда вступает на ветвь красных гигантов, а затем поднимается еще выше, к вершине своей эволюции на диаграмме Г–Р и достигает асимптотической ветви гигантов (АВГ). АВГ была названа так потому, что звезды разных масс за разное время "асимптотически" приближаются примерно к одной и той же области диаграммы Г–Р.

Когда звезда находится на АВГ, она начинает интенсивно терять вещество. Образуется протяженная газопылевая оболочка, которая, расширяясь, рассеивается в межзвездной среде. Скорость потери массы у разных звезд – красных гигантов может достигать 10-7–10-5 Mo/год. Стадия потери массы на АВГ – от нескольких сотен тысяч до нескольких миллионов лет – очень кратковременна по сравнению со временем жизни звезды солнечной массы на главной последовательности. Звезда с массой порядка солнечной растрачивает на АВГ значительную часть своего вещества. По мере того, как звезда освобождается от внешних холодных слоев, ее температура быстро растет, и звезда быстро смещается влево по диаграмме Г–Р. Этому состоянию соответствует ветвь Пост АВГ ("после асимптотической ветви"). В результате конвективная оболочка полностью сбрасывается, и от звезды остается вырожденное ядро – белый карлик с температурой поверхности до 50 000 K, который не имеет ядерных источников энергии и в последующем медленно остывает. Звезда на диаграмме Г–Р быстро "падает" вниз, в область белых карликов. Сброшенная околозвездная оболочка ионизуется под действием ультрафиолетового излучения горячего белого карлика и образует вокруг него планетарную туманность. Так заканчивают свой жизненный путь звезды солнечного типа. Впервые подобная идея была высказана советским астрофизиком И.С. Шкловским в 1956 г. (Астрон. журнал, т. 33, N 3, с. 315–329), который обратил внимание, что ядро красного гиганта – это готовый белый карлик, которому остается лишь освободиться от окружающей оболочки. В настоящее время эта схема эволюции является общепринятой.

О внесолнечных планетных системах

До недавнего времени Солнечная система оставалась единственной известной нам планетной системой во Вселенной. Как обнаружить планету около другой звезды? Самый прямой способ – поиск в окрестностях звезды при помощи крупного телескопа. Однако планета сама не светится, а лишь отражает свет звезды, причем малую его долю. Если планета близка к звезде, этот слабый отраженный свет будет "тонуть" в лучах самой звезды. Если же планета далеко, то отделить ее от звезды проще, но и отраженный свет окажется слабее. Прямые наблюдения планет около ближайших звезд – дело будущего,

Влияние планеты на лучевую скорость звезды V*
при движении вокруг общего центра тяжести
хотя и недалекого. Пока используются только косвенные методы поиска внесолнечных планет. Самый старый из них – астрометрический – поиск невидимых спутников по отклонениям в собственных движениях звезд на небесной сфере, к сожалению, не дал достоверных результатов.

Другой метод обнаружения планет вокруг звезд использует эффект Доплера. В настоящее время этот метод – основной; им обнаружены почти все известные внесолнечные планетные системы. Если звезда имеет планету, обе они обращаются вокруг общего центра тяжести. Звезда движется по малой орбите и с маленькой скоростью, планета – по большой орбите, с большой скоростью. Средняя скорость движения планет по орбитам – десятки километров в секунду, а скорость движения звезды вокруг центра тяжести под действием планеты – несколько метров или десятков метров в секунду. Задача состоит в том, чтобы по смещениям линий в спектре звезды измерить скорость этого движения.

Затмение звезды HD 209458 планетой
(Copyright Lynette Cook)
Здесь наибольшие шансы на успех, если орбита планеты видна "с ребра". Тогда доплеровские смещения линий в спектре звезды, вызванные движением звезды вокруг общего центра тяжести системы, будут максимальными.

Еще один способ обнаружения планет вокруг других звезд – "затменный", или "транзитный". В этом методе наблюдатели ищут небольшие периодические ослабления блеска звезды, когда планета в своем движении проходит по диску звезды ("затмевает" звезду). И в этом случае (как и в доплеровском методе) необходимо, чтобы орбита планеты наблюдалась "с ребра", тогда есть шанс увидеть затмение. Если угол наклона плоскости орбиты к картинной плоскости i не очень сильно отличается от 90њ, есть вероятность, что планета пройдет по диску звезды. Затмение может происходить только в узком диапазоне углов i вблизи 90њ; если оно наблюдается, то, зная примерно угловой размер диска звезды, сразу можно наложить жесткие ограничения на величину наклонения орбиты и тем самым точнее оценить массу планеты. Планета гораздо меньше звезды и может закрыть только малую часть звездного диска. Поэтому блеск звезды во время затмения ослабнет очень немного, на тысячные доли звездной величины. Транзитный метод применяется для поиска планетных систем в рамках польско-американского эксперимента по поиску гравитационных линз OGLE (Optical Gravitational Lensing Experiment), первичной целью которого был поиск носителей "темной материи" по изменениям блеска звезд, когда объект проходит между звездой и Солнцем.

Наконец, разрабатываются проекты прямых наблюдений планет у других звезд. Планируется несколько космических миссий с такой задачей. Один из ближайших запусков, миссия Кеплер, намечен NASA на 2006 год. NASA ведет также работу над проектом TPF – Terrestrial Planet Finder (Поиск планет земного типа). TPF будет иметь четыре зеркала по 3.5 м каждое и будет работать в режиме интерферометра инфракрасного диапазона. Запуск космического аппарата TPF может быть осуществлен после 2010 года. Другой проект разрабатывается Европейским космическим агентством, это космический интерферометр Darwin. Он будет состоять из 10 отдельных телескопов, обращающихся на околоземной орбите вблизи друг друга. Телескопы будут связаны лазерной связью. Системы телескопов TPF и Darwin будут иметь чувствительность и угловое разрешение во много раз выше крупнейших наземных инструментов. Тогда, возможно, удастся увидеть внесолнечные планеты непосредственно.

Последнее десятилетие XX века – время настоящего прорыва в исследованиях других планетных систем. Доплеровские наблюдения над многими звездами, начатые на нескольких обсерваториях в 1991 году, принесли сенсационные результаты. Оказалось, что очень многие из близких к Солнцу звезд обладают планетными системами. Первая внесолнечная планета была открыта при помощи доплеровского метода в 1995 году Майором и Келозом (Женевская обсерватория) у звезды класса G2.5IV 51 Пегаса. С тех пор на 5 февраля 2005 г. было достоверно обнаружено 147 планет в системах вокруг 128 звезд; есть звёзды (их 15), у которых найдено по 2–4 планеты. Подробнее об истории открытия внесонечных планетных систем можно прочитать здесь [1], [2], [3].

Большинство найденных планетных систем совершенно не похожи на нашу. Найденные планеты по своим свойствам напоминают планеты-гиганты Солнечной системы. Сказывается эффект наблюдательной селекции. Во-первых, чем массивнее планета, тем больший эффект она будет оказывать на свою звезду и тем больше будут изменения лучевой скорости звезды. Легче всего открывать планеты порядка массы Юпитера (1MJ$\approx$0.001Mo) или больше. Во-вторых, чем короче период обращения Tpl, тем проще его обнаружить. При наблюдениях спектра звезды в течение месяца или двух уже можно увидеть периодические изменения в ее лучевой скорости, вызванные планетой. Некоторые планеты с массами 1–2 MJ имеют периоды обращения вокруг звезды чуть более суток, а их расстояние от звезды примерно в 40 раз меньше, чем расстояние от Земли до Солнца. Естественно, столь близкие к звездам планеты будут сильно нагреваться. Поэтому их называют "горячие Юпитеры".

Орбиты внесолнечных планет сильно различаются по величине эксцентриситета e. В Солнечной системе у большинства планет эксцентриситет орбиты небольшой. Так, у Земли орбита почти круговая, для нее e = 0.0167. Более всего вытянуты орбиты у Меркурия (e = 0.21) и Плутона (e = 0.24). В то же время в других планетных системах есть планеты с очень вытянутыми орбитами, с эксцентриситетом до 0.7.

Блестящим подтверждением результатов доплеровского метода явилось наблюдение затмения у звезды HD 209458. У нее планета с массой 1.43MJ была ранее обнаружена по изменениям лучевой скорости. Из найденных параметров орбиты были предсказаны ожидаемые моменты затмений. Продолжительность "затмения" – несколько часов. Планета у HD 209458 короткопериодическая, период обращения всего 3.5 суток; поэтому такие затмения можно наблюдать очень часто. Первые успешные результаты дал и транзитный метод в рамках программы OGLE: у четырех звезд солнечного типа найдены короткопериодические планеты.

Большинство звезд, у которых к настоящему времени открыты планеты, принадлежат к спектральным классам G главной последовательности; среди них есть также несколько красных карликов класса M. Обнаружение планет у красных гигантов – гораздо более трудная задача. Здесь не подходит ни один из перечисленных выше методов. Все известные яркие красные гиганты – звезды высокой светимости – находятся на расстояниях в сотни парсек от Земли. Их собственные движения очень малы. Для того чтобы найти в их движении малые отклонения, вызванные планетой, нужны сотни и тысячи лет высокоточных астрометрических наблюдений. Доплеровский метод годится лишь для относительно ранних красных гигантов, принадлежащих к спектральному классу K. Только у этих звезд можно найти в спектре достаточно узкие и резкие атомарные линии поглощения, которые дадут возможность измерять лучевую скорость звезды с необходимой точностью. Для более поздних звезд классов M, S, C с переходом на АВГ доплеровский метод становится неприменимым. Безнадежно также искать затмения: планета закрывает малую часть огромного диска красного гиганта, и блеск звезды во время затмения ослабеет на ничтожную величину; собственные вариации блеска красных гигантов гораздо больше. Прямые наблюдения планет у красных гигантов опять-таки вряд ли возможны по причине большой удаленности этих звезд. Тем не менее, по косвенным признакам все же можно определить, обладает ли красный гигант на стадии АВГ планетой. Как – об этом говорится в следующих разделах.

Судьба планетной системы

И мы потому лишь все вместе спаслись,
Что к этому времени не родились.
     

Эдуард Успенский. "Вера и Анфиса".


Итак, после нескольких миллиардов лет, проведенных на главной последовательности, звезда с массой порядка солнечной перейдет в стадию красного гиганта. Радиус звезды возрастет сначала в несколько десятков, затем в несколько сотен раз и достигнет одной астрономической единицы. Если у звезды была планетная система, то на стадии АВГ более близкие планеты, с большими полуосями орбит a < 1 а. е., окажутся погруженными в атмосферу звезды. Планеты внутри зоны порядка одной астрономической единицы (в нашей системе это Меркурий и Венера) будут поглощены расширившейся атмосферой звезды, затормозятся в ней и, двигаясь по спиральной траектории к центру звезды, испарятся. Первыми сгорят "горячие Юпитеры", движущиеся на орбитах с большими полуосями в сотые доли астрономической единицы. Более удаленные планеты (такие, как Марс, Юпитер, Сатурн и т. д.), скорее всего, выживут. Неясна судьба планет на a ~ 1 а. е., в том числе Земли. Конечный результат в сильной степени зависит от принятой модели эволюции звезды, в том числе нашего Солнца. Изменение радиуса звезды на несколько процентов в сторону уменьшения может дать нашей планете шанс пережить стадию АВГ Солнца. Если же радиус красного гиганта Солнце окажется на несколько процентов больше, наша планета погибнет. Такое событие для стороннего наблюдателя может не пройти незамеченным. Пример тому – возможное поглощение планетной системы звездой V838 Единорога. В 2002 году эта звезда испытала подряд три вспышки с интервалом в несколько месяцев. До вспышки V838 Единорога, вероятнее всего, относилась к звездам главной последовательности класса F. После вспышки она эволюционирует к более низким температурам и более поздним спектральным классам. Большинство исследователей сочли звезду пекулярной новой. Была предложена и другая интерпретация: при быстром переходе к стадии красного гиганта V838 Единорога поглотила одну за другой три планеты, обращавшихся на близких орбитах; удалось, таким образом, застать редчайший момент гибели целой планетной системы.


Так может выглядеть планетная система Альдебарана
©right; John Whatmough 1998 (Extrasolar Visions)
Насколько часто могут наблюдаться подобные катастрофы? На сегодня поиск планетных систем доплеровским методом привел к открытию планет у нескольких красных гигантов и субгигантов спектральных классов K. Их параметры перечислены в таблице, составленной по данным Каталога внесолнечных планет Медонской обсерватории, Франция. Среди проэволюционировавших звезд это, если можно так выразиться, еще "молодняк". Радиусы этих звезд от 4 до 23Ro; они пока не "глотают" свои планеты, им только предстоит разрастись до размеров типичных звезд АВГ. Эти звезды находятся в начальной стадии перехода к красным гигантам. Планета с массой ~11MJ (не подтвержденная), возможно, обнаружена также у гиганта K5III Альдебаран (α Тельца), одной из наиболее ярких звезд зимнего неба. Радиус Альдебарана – половина расстояния от Солнца до Меркурия.

 

Таблица 1. Красные гиганты и субгиганты, у которых обнаружены планеты

Название

ι Дракона

 

ε  Сетки

γ Цефея

HD