A.6 Sfericheskie funkcii
Gravitacionnyi potencial
vo vseh tochkah, nahodyashihsya na
poverhnosti i vne Zemli, udovletvoryaet uravneniyu Laplasa:
Pri
poluchaetsya uravnenie Lezhandra. V funkciyah
verhnii indeks 0 obychno opuskayut.
Opredelim sfericheskie funkcii kak
Polinomy Lezhandra predstavlyayut soboi resheniya uravneniya Laplasa,
obladayushie osevoi simmetriei. Ochevidno, esli
, to sfericheskie
funkcii
ne zavisyat ot dolgoty, i
nazyvayutsya zonal'nymi. Potencial, razlagayushiisya tol'ko po
zonal'nym funkciyam, mozhno zapisat' v vide ryada po stepenyam
rasstoyaniya
ot nachala koordinat, koefficientami kotorogo
yavlyayutsya polinomy Lezhandra. Oni zavisyat tol'ko ot polyarnogo
rasstoyaniya
.
Prisoedinennye funkcii Lezhandra yavlyayutsya ortogonal'nymi funkciyami, t.e.
Kazhdaya dvazhdy differenciruemaya deistvitel'naya funkciya
, takaya chto
i opredelennaya pri
i
na poverhnosti sfery, mozhet byt'
razlozhena v shodyashiisya ryad
![]() |
||
![]() |
Koefficienty razlozheniya nahodyatsya sleduyushim obrazom:
gde
<< A.5 Krivolineinye koordinaty | Oglavlenie | B. Osnovnye terminy >>
|
Publikacii s klyuchevymi slovami:
astrometriya - sfericheskaya astronomiya - sistemy koordinat - shkaly vremeni
Publikacii so slovami: astrometriya - sfericheskaya astronomiya - sistemy koordinat - shkaly vremeni | |
Sm. takzhe:
Vse publikacii na tu zhe temu >> | |
![$\displaystyle =\sum_{j=0}^{\infty}\left[\frac{1}{2}\alpha_{j0}P_j(\cos\theta) +\sum_{m=0}^j P^m_j(\cos\theta)(\alpha_{jm}\cos m\lambda +\beta_{jm}\sin m\lambda)\right] =$](https://images.astronet.ru/pubd/2003/06/11/0001190894/tex/formula1072.gif)
