Rambler's Top100Astronet    
  по текстам   по ключевым словам   в глоссарии   по сайтам   перевод   по каталогу
 
На сайте
Астрометрия
Астрономические инструменты
Астрономическое образование
Астрофизика
История астрономии
Космонавтика, исследование космоса
Любительская астрономия
Планеты и Солнечная система
Солнце

Магнитные поля Солнца и Звёзд

Рис. 1. Магнитные поля
солнечных пятен,
образующиеся благодаря
подъёму на поверхность
общего подфотосферного
азимутального магнитного поля.
Магн. поля присутствуют, по-видимому, на всех звёздах. Впервые магн. поле было обнаружено на ближайшей к нам звезде - Солнце - в 1908 г. амер. астрономом Дж. Хейлом, измерившим зеемановское расщепление спектр. линий в солнечных пятнах (см. Зеемана эффект). Согласно совр. измерениям, макс. напряжённость магн. поля пятен $\approx$4000 Э. Поле в пятнах есть проявление общего азимутального магн. поля Солнца, силовые линии к-рого имеют различное направление в Северном и Южном полушариях Солнца (рис. 1). В 1953 г. амер. астроном X.У. Бэбкок открыл значительно более слабую дипольную составляющую солнечного магн. поля (~1 Э) с магн. моментом, ориентированным вдоль оси вращения Солнца (рис. 2). В 70-х гг. 20 в. удалось обнаружить примерно такую же слабую по напряжённости неосесимметричную крупномасштабную составляющую солнечного магн. поля. Она оказалась связанной с межпланетным магн. полем, имеющим различные направления радиальных составляющих в разных пространств. секторах (см. Секторная структура межпланетная), что соответствует на Солнце квадруполю, ось к-рого лежит в плоскости солнечного экватора (рис. 3). Наблюдалась также и двухсекторная структура, соответствующая диполю. В целом крупномасштабное магн. поле Солнца выглядит достаточно сложным. Ещё более сложная структура поля обнаружена в малых масштабах. Наблюдения указывают на Существование мелкомасштабных иглоподобных полей с напряженностью до 2000 Э. Мелкомасштабные магн. поля связаны также с конвективными ячейками (см. Конвекция, Солнце), наблюдаемыми на поверхности Солнца.

Рис. 2. Дипольная осесимметричная
составляющая крупномасштабного
магнитного поля Солнца.
Наиболее выражена у полюсов.
Магн. поле Солнца не остается неизменным. Осесимметричное крупномасштабное поле квазипериодически изменяется с периодом прибл. 22 года (Солнечный цикл). При этом каждые 11 лет происходят обращение дипольной составляющей и смена направления азимутального поля. Неосесимметричная секторная составляющая поля изменяется прибл. с периодом обращения Солнца вокруг своей оси. Мелкомасштабные магн. поля изменяются нерегулярно, хаотически.

Магн. поле несущественно для равновесия Солнца; равновесное состояние определяется балансом сил тяготения и градиента давления. Зато все проявления солнечной активности связаны с магн. полями (солнечные пятна, вспышки на Солнце, протуберанцы). Магн. поле играет определяющую роль в создании солнечной хромосферы и в нагреве (до миллионов градусов) солнечной короны. Наблюдения, выполненные на космич. станции "Скайлэб" (США, 1973-1974 гг.), показали, что высвечиваемая в УФ- и рентг. диапазонах энергия выделяется в многочисл. локализованных областях, отождествляемых с петлями магн. поля. С другой стороны, области, в к-рых излучение значительно ослаблено (корональные дыры), отождествляются с открытыми во внеш. пространство конфигурациями магн. силовых линий. Считается, что в этих областях берут начало быстрые потоки солнечного ветра.

Рис. 3. Радиальная составляющая крупномасштабного
магнитного поля Солнца, построенная
по наблюдавшемуся в период 1976-1977 гг.
Л. Свалгардом и Дж. Уилкоксом (США)
лучевому компоненту поля. Знак плюс
означает, что поле неправлено от Солнца,
минус - к Солнцу. Кривая разделяет области
положительного и отрицательного направлений
радиальной составляющей поля.
Все звезды, кроме Солнца, столь удалены от нас, что воспринимаются как точечные объекты. Поэтому непосредств. наблюдения далёких звёзд позволяют определить напряжённость магн. поля, усреднённую по поверхности звезды, и мало что говорят о конфигурации (геометрии) поля. Относительно малое количество света, принимаемого от удалённых звёзд, позволяет регистрировать с помощью эффекта Зеемана только достаточно сильные магн. поля. Таким способом удалось обнаружить особую группу звёзд с сильными (до $3,4\cdot 10^4$ Э) полями - магнитные звезды. Количество звёзд, у к-рых магн. поле зарегистрировано прямым зеемановским методом, невелико (неск. сотен).

Существование магн. полей у др. звёзд удаётся доказать непрямыми методами. У звёзд главной последовательности обнаружены хромосферы. У более чем десяти таких звёзд удалось проследить звёздный цикл (аналогичный солнечному циклу), наблюдая изменения интенсивности хромосферных линий Са. Открыты и изучены звёзды (типа BY Draconis), поверхность к-рых покрывается пятнами на 20-30%. У Солнца пятна покрывают не более 2% поверхности. Рентгеновские наблюдения, выполненные со станции НЕАО-2 (1980 г., США), позволили обнаружить горячие короны у большого количества звёзд различных спектральных классов, от самых горячих 0- и В-звёзд до холодных карликов классов К, М. Поскольку на Солнце все подобные явления связаны с наличием магн. поля, эти факты можно рассматривать как свидетельство присутствия магн. полей на др. звёздах. Напряжённость и геометрию полей, разумеется, можно оценивать лишь косвенно. Впрочем, известна звезда $\xi$Воо (G 8), у к-рой наряду с перечисленными выше косвенными свидетельствами поле ($\approx 2,5\cdot 10^3$ Э) зарегистрировано и прямо по эффекту Зеемана. Это убеждает в правильности общего вывода о магнетизме звёзд.

Очень сильные магн. ноля имеются у ряда звёзд, находящихся в заключит. стадии эволюции. У нек-рых белых карликов, как показывают наблюдения круговой поляризации их непрерывного излучения, напряжённость поля достигает 106-108 Э. Ещё более сильные магн. поля связаны с быстровращающимися нейтронными звёздами - пульсарами. Источником энергии пульсара служит вращение нейтронной звезды. Магн. поле явл. передаточным звеном, трансформирующим энергию вращения звезды в энергию частиц и излучения. Согласно оценкам, для объяснения наблюдаемых эффектов напряжённость поля на поверхности звезды должна достигать ~ 1012 Э.

Очень сильные магн. поля удалось обнаружить также у нейтронных звёзд, входящих в состав двойных звёздных систем. Примером может служить нейтронная звезда, проявляющаяся в виде рентгеновского пульсара в двойной системе. Ионизованный газ с норм. звезды падает па нейтронную звезду. Магн. поле нейтронной звезды тормозит газ вблизи поверхности, на к-рой сравниваются газовое и магн. давления, и направляет его в область магн. полюсов звезды, где газ излучает. Наблюдениям удовлетворяют модели с сильным (1010-1013 Э) полем. В зависимости от величины магн. поля, потока газа и параметров системы, исходящее рентг. излучение приобретает определённую направленность и поляризацию. Исследование диаграммы направленности и поляризации позволят сделать выводы о величине и геометрии магн. поля звезды. Для прямого исследования этих полей используют спектр. линии (гиролинии), обусловленные излучением электронов в магн. поле (см. Циклотронное излучение). Гиролиния обнаружена, напр., в рентг. спектре пульсара Her X-1 [магн. поле $(4-6)\cdot 10^{12}$ Э]. Интерпретация гиролинии в спектрах источников гамма-всплесков, позволила доказать, что источниками всплесков явл. нейтронные звёзды с напряжённостью магн. поля $\approx (2-7)\cdot 10^{12}$ Э.

Как показал В.Л. Гинзбург, незаряженная чёрная дыра не должна обладать магн. полем. При коллапсе звезды её магн. дипольный момент и моменты более высокого порядка асимптотически исчезают. Однако магн. поля, по-видимому, играют существенную роль в процессах, происходящих в окрестностях чёрных дыр. В частности, согласно существующим теориям, в двойных звёздных системах, одним из компонентов к-рых явл. чёрная дыра, с помощью магн. поля может осуществляться перенос углового момента газа, падающего на чёрную дыру, и тем самым формирование диска, излучающего в рентг. диапазоне.

Звёзды образуются из межзвёздного газа, пронизанного магн. полем. Простейшее решение проблемы (эволюц. подход), заключающееся в том, что наблюдаемые поля звёзд представляют собой продукт сжатия исходного поля, оказывается недостаточным. Адиабатич. сжатие газа, не сопровождающееся потерей магнитного потока, привело бы к слишком сильным полям, поскольку ср. плотность обычной звезды типа Солнца больше плотности межзвездной среды прибл. в 1024 раз. Коэфф. адиабатич. усиления поля при этом равен 1016, т.е. межзвёздное поле ~ 10-6 Э превратилось бы в поле с напряжённостью 1010 Э, что противоречит наблюдениям. Эволюц. подход к происхождению магн. поля, по-видимому, справедлив лишь для нек-рых типов звёзд (магн. звёзд, пульсаров, возможно, для белых карликов). У большинства звёзд поле исчезает и восстанавливается за времена, короткие по сравнению с характерными временами эволюции звезд. Такие быстрые изменения невозможно объяснить омической диссипацией (джоулевым затуханием, см. Магнитогидродинамика) или эволюц. изменениями. Они происходят в результате преобразования магн. полей под действием движений хорошо проводящего вещества звёзд. Наиболее эффективно поле изменяют неоднородное вращение и конвективные движения (см. Гидромагнитное динамо).

Лит.:
Пикельнер С.Б., Основы космической электродинамики, 2 изд., М., 1966; Паркер Е.Н., Космические магнитные поля, пер. с англ., ч. 1-2, М., 1982; Wilson О.С., Vaughаn А.H., Мihalas D., "Scientific American", 1981, V. 244, p. 82.

(А.А. Рузмайкин)


Глоссарий Astronet.ru


А | Б | В | Г | Д | З | И | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Х | Ц | Ч | Ш | Э | Я 
Публикации с ключевыми словами: магнитные поля звезд - магнитное поле Солнца
Публикации со словами: магнитные поля звезд - магнитное поле Солнца
См. также:
Все публикации на ту же тему >>

Оценка: 2.9 [голосов: 148]
 
О рейтинге
Версия для печати Распечатать

Астронет | Научная сеть | ГАИШ МГУ | Поиск по МГУ | О проекте | Авторам

Комментарии, вопросы? Пишите: info@astronet.ru или сюда

Rambler's Top100 Яндекс цитирования